期刊文献+

基于多变量类别自适应的图像分割算法 被引量:1

Image Segmentation Based on Class Adaptive Spatially Variant Mixture Model
下载PDF
导出
摘要 提出一种根据分割要求自动配置区域平滑性的图像分割算法.通过对现有的类别自适应空间变量混合模型进行改进,修改模型算法中Markov随机场的势函数部分,在判断分割区域环节时引入了像素的色彩或灰度信息,使改进后算法的稳定性有明显提升;同时增加了像素强度系数α以及算法的灵活性,提高了其实用价值.最后在MIT及Berkeley的分割测试图片上进行仿真实验,证明了该算法的有效性. This paper proposes an image segmentation method which allocates regional smoothness automatically according to the requirements. The method improves existing class adaptive spatially variant mixture model based on revising the potential function in Markov random field and introducing colorful or grey feature information into the assessment of segmentation regions. As a result, the stability by the revised method is improved significantly. Meanwhile, the added pixel strength coefficients to the method increase its flexibility and practical value greatly. Finally, the algorithm efficiency is approved through experimental simulation on the test images from MIT and Berkeley galley.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第10期1383-1388,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 公安部重点项目(20029322301) 黑龙江省自然科学基金(F0318)
关键词 MARKOV随机场 图像分割 EM聚类 Markov random field image segmentation EM clustering
  • 相关文献

参考文献11

  • 1Figueiredo M A T, Jain A K. Unsupervised learning of finite mixture models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381-396
  • 2McLachlan G, Peel D. Finite mixture models[M]. New York: John Wiley & Sons, 2000
  • 3Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society: Series B, 1977, 39(1): 1-38
  • 4Blekas K, Fotiadis D I, Likas A. Greedy mixture learning for multiple motif discovery in biological sequences [J]. Bioinformatics, 2003, 19(5) : 607-617
  • 5Greenspan H, Dvir G, Rubner Y. Context dependent segmentation and matching in image databases [J]. Computer Vision and Image Understanding, 2004, 93(1) : 86-109
  • 6Sanjay-Gopel S, Hebert T J. Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm [J]. IEEE Transactions on Image Processing, 1998, 7(7): 1014-1028
  • 7Diplaros A, Vlassis N, Gevers T. A spatially constrained generative model and an EM algorithm for image segmentation [J]. IEEE Transactions on Neural Networks,2007, 18(3): 798-808
  • 8Constantinopoulos C, Likas A. Unsupervised learning of Gaussian mixtures based on variational component splitting [J]. IEEE Transactions on Neural Networks, 2007, 18(3): 745-755
  • 9张红梅,袁泽剑,蔡忠闽,卞正中.基于层次MRF的MR图像分割(英文)[J].软件学报,2002,13(9):1779-1786. 被引量:13
  • 10Nikou C, Galatsanos N P, Likas A C. A class adaptive spatially variant mixture model for image segmentation [J]. IEEE Transactions on Image Processing, 2007, 16(4): 1121-1130

二级参考文献12

  • 1Wang, Y., Adali, T., Xuan, J.H., etal. Magnetic resonance image analysis by information theoretic criteria and stochasticsite models. IEEE Transactions on Information Technology in Biomedicine, 2001,5(2):150~158.
  • 2Choi, H.S., Haynor, D.R., Kim, Y. Partial volume tissue classification ofmultichannel magnetic resonance images -? a mixture model. IEEE Transactions on MedicalImaging, 1994,10(9):395~407.
  • 3Santago, P., Gage, H.D. Quantification of MR brain images by mixture density andpartial volume modeling. IEEE Transactions on Medical Imaging, 1993,12(9):566~574.
  • 4Wang, Y., Adali, T., Kung, S.Y., et al. Quantification and segmentation of braintissues from MR images. IEEE Transactions on Image Processing, 1998,7(8):1165~1181.
  • 5Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., et al. Morphometric analysis ofwhite matter lesions in MR images: method and alidation. IEEE Transactions on ImageProcessing, 1994,13(9):716~724.
  • 6Li, S.Z. Markov random field modeling in image analysis. 2th ed., New York, BerlinHeidelberg: Springer-Verlag, 2000. 58~62.
  • 7Cline, H.E., Lorensen, W.E., Kikinis, R., et al. Three dimensional segmentation ofMR images of the head using probability and connectivity. Journal of Computer-AssistedTomography, 1990,14:1037~1045.
  • 8Liang, Z., MacFall, J.R., Harrington, D.P. Parameter estimation and tissuesegmentation from multispectral MR images. IEEE Transactions on Medical Imaging,1994,13(9):441~449.
  • 9Ueda, N., Nakano, R. Deterministic annealing EM algorithm. Neural Networks,1998,11:271~282.
  • 10Dempster, A.P., Laird, N.M., Rubin, D.B. Maximum-Likelihood from incomplete datavia the EM algorithm. Journal of the Royal Statistical Society, 1997,B(39):1~38.

共引文献12

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部