期刊文献+

挖掘数据流任意滑动时间窗口内频繁模式 被引量:45

Mining the Frequent Patterns in an Arbitrary Sliding Window over Online Data Streams
下载PDF
导出
摘要 由于数据流的流动性与连续性,数据流所蕴含的知识会随着时间的推移而发生变化.因此,在绝大多数数据流的应用中,用户往往对新产生的流数据所包含的知识要比对历史流数据所包含的知识感兴趣得多.提出了一种挖掘数据流任意大小滑动时间窗口内频繁模式的方法MSW(mining sliding window).当数据流流过时,该方法使用滑动窗口树SW-tree在单遍扫描流数据的条件下及时捕获数据流上最新的模式信息.同时,该方法还周期性地删除滑动窗口树上过期的及不频繁的模式分支,从而降低滑动窗口树的空间复杂度与维护代价.此外,该方法还应用时间衰减模型逐步降低历史事务模式支持数的权重,并由此来区分最近产生事务与历史事务的模式.大量仿真实验的结果表明,算法MSS具有较高的效率与优良的可扩展性,同时也优于其他同类算法. Because of the fluidity and continuity of data stream, the knowledge embedded in stream data is most likely to be changed as time goes by. Thus, in most data stream applications, people are more interested in the information of the recent transactions than that of the old. This paper proposes a method for mining the frequent patterns in an arbitrary sliding window of data streams. As data stream flows, the contents of the data stream are captured with a compact prefix-tree by scanning the stream only once. And the obsolete and infrequent items are deleted by periodically pruning the tree. To differentiate the patterns of recently generated transactions from those of historic transactions, a time decaying model is also applied. Extensive simulations are conducted and the experimental results show that the proposed method is efficient and scalable, and also superior to other analogous algorithms.
作者 李国徽 陈辉
出处 《软件学报》 EI CSCD 北大核心 2008年第10期2585-2596,共12页 Journal of Software
基金 国家自然科学基金 国家高技术研究发展计划(863)~~
关键词 数据流 频繁模式挖掘 滑动时间窗口 时间衰减模型 data stream frequent pattern mining sliding window time decaying model
  • 相关文献

参考文献14

  • 1Gaber MM, Zaslavsky A, Krishnaswamy S. Mining data streams: A review. ACM SIGMOD Record, 2005,34(2): 18-26.
  • 2Jiang N, Gruenwald L. Research issues in data stream association rule mining. ACM SIGMOD Record, 2006,35(1):14-19.
  • 3Garofalakis MN, Gehrke J. Querying and mining data streams: You only get one look a tutorial. In: Franklin MJ, Moon B, Ailamaki A, eds. Proc. of the 2002 ACM SIGMOD Int'l Conf. on Management of Data. Madison: ACM Press, 2002. 635-635.
  • 4Giannella C, Han J, Pei J, Yan X, Yu PS. Mining frequent patterns in data streams at multiple time granularities. In: Data Mining: Next Generation Challenges and Future Directions. 2004. 191-212.
  • 5Chang JH, Lee WS. Finding recent frequent itemsets adaptively over online data streams. In: Lise G, Ted ES, Pedro D, Christos F, eds. Proc. of the 9th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Washington: ACM Press, 2003. 487-492.
  • 6Jiang N, Gruenwald L. CFI-Stream: Mining closed frequent itemsets in data streams. In: Roberto B, Kristin PB, Gautam D, Dimitrios G, Johannes G, eds. Proc. of the 12th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Philadelphia: ACM Press, 2006. 592-597.
  • 7Yu JX, Chong Z, Lu H, Zhang Z, Zhou A. A false negative approach to mining frequent itemsets from high speed transactional data streams, Information Sciences, 2006,176(4):1986-2015.
  • 8Leung CKS, Khan QI. DStree: A tree structure for the mining of frequent sets from data streams. In: Clifton CW, Zhong N, Liu JM, Wah BW, Wu XD, eds. Proc. of the 6th Int'l Conf. on Data Mining. Hong Kong: IEEE Press, 2006. 928-932.
  • 9Wong RCW, Fu AWC. Mining top-k frequent itemsets from data streams. Data Mining and Knowledge Discovery, 2006,13(2): 193-217.
  • 10Papadimitriou A, Yu PS. Optimal multi-scale patterns in time series streams. In: Roberto B, Kristin PB, Gautam D, Dimitrios G, Johannes G, eds. Proc. of the 2006 ACM SIGMOD Int'l Conf. of Management of Data. Chicago: ACM Press, 2006. 647-658.

同被引文献352

引证文献45

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部