期刊文献+

新几何阻挫物质M_2(OH)_3X的新颖量子磁性———磁有序和涨落在均匀自旋系的共存 被引量:1

EXOTIC QUANTUM MAGNETISM IN A NEW GEOMETRIC FRUSTRATION SERIES M_2(OH)_3X-COEXISTENCE OF MAGNETIC ORDER AND SPIN FLUCTUATION IN UNIFORM SPIN SYSTEM
下载PDF
导出
摘要 几何阻挫引起诸多的未知新颖量子状态,这些新颖量子相的理解预计将带来物理学的突破。笔者通过材料科学研究,偶然发现了新型几何阻挫系列M2(OH)3X[M=Cu,Co,Ni,Mn,Fe etc.;X=Cl,Br,I]。它们初步展示了新颖的磁性,虽然这些物质是由单一磁性离子组成的均匀晶体,在这些化学均匀系中自旋的有序[如铁磁或反铁磁秩序]和自旋涨落同时共存。因为d电子磁性离子的量子性,本物质系列提供了研究几何阻挫引发的新颖量子特性的绝好舞台。本文综合介绍我们在这一方面最近取得的主要成果。他山之石可以攻玉,新材料的发现往往会带来物理学的新进展,本文同时也例证了材料科学对凝聚态物理的重要性。 Exotic quantum states induced by geometric frustration receive intense attention because the unveiling of the underlying physics is expected to bring breakthrough in condensed matter physics. This article reviews the discovery and introduces magnetic properties of a new geometrically frustrated material series M2(OH)3X where M stands for transition-metal magnetic ions of Cu, Co, Ni, Mn or Fe etc. and X for Cl, Br or I. Novel properties of coexisting magnetic order and spin fluctuation were found in these uniform d-electron spin systems, which provide a unique practical system to study exotic quantum properties arising from geometric frustration. It is also demonstrated that materials science exploration is important to the condensed matter physics research.
作者 郑旭光
出处 《物理学进展》 CSCD 北大核心 2008年第3期314-326,共13页 Progress In Physics
关键词 几何阻挫 新颖量子状态 磁有序和自旋涨落的共存 过渡金属卤化物M2(OH)3X geometric frustration exotic quantum states coexisting magnetic order and spin fluctuation transition metal hydroxyhalides M2(OH)3X
  • 相关文献

参考文献32

  • 1Pauling L J. Am. Chem. Soc., 1935, 57:2680-2684.
  • 2Giaque W F, Stout J W. J Am Chem Soc, 1936, 58: 1144-1150.
  • 3Harris M J, Bramwell S T, McMorrow D F,, et al. Phys Rev Lett, 1997, 79:2554-2557.
  • 4Bramwell S T, Gingras M J P. Science, 2001, 294 (5546) : 1495-1501.
  • 5Sakakibara T, Tayama T, Hiroi Z, et al. Phys Rev Lett, 2003, 90:207205 1-4.
  • 6Diep H T, Frustrated Spin Systems, Singapore: World Scientific, 2004.
  • 7Anderson P W. Phys Rev, 1956, 102: 1008-1013.
  • 8Moessner R, Chalker J T. Phys Rev B, 1998, 58: 12049-12062.
  • 9Canals B, Lacroix C. Phys Rev B, 2000, 61:1149-1159.
  • 10Onuchic J N, Luthey-Schuhen Z, Wolynes P G. Ann Rev Phys Chem, 1997, 48:,545-600.

同被引文献14

  • 1Moessner R, Ramirez A P. Phys Today, 2006, 59(2): 24.
  • 2Zheng X G, Xu C N. Solid State Commun., 2004, 131: 509.
  • 3Zheng X G, Otabe E S. Solid State Commun., 2004, 130: 107.
  • 4Zheng X G, Kawae T, Kashitani Y, et al. Phys. Rev. B, 2005, 71: 052409.
  • 5Zheng X G, Kubozono H, Nishiyama K, et al. Phys. Rev. Lett., 2005, 95: 057201.
  • 6Zheng X G, Mori T, Nishiyama K, et al. Phys. Rev. B, 2005, 71: 174404.
  • 7Zheng X G, Nishiyama K. Physica B, 2006, 374-375: 156.
  • 8Zheng X G, Hagihala M, Fujihala M, et al. J Phys. : Conf. Series., 2009, 145(1): 2034.
  • 9Bae J S, Yang I, Lee J S, et al. Phys. Rev. B, 2006, 73: 052301.
  • 10Saha S, Singh S, Dkhil B, et al. Phys. Rev. B, 2008, 78: 214102.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部