期刊文献+

运动对象组最近邻连续查询的有效期延迟策略 被引量:1

Extending the valid time of continuous group nearest neighbor query with moving objects
下载PDF
导出
摘要 针对基于概念划分的运动对象组最近邻连续查询算法中结果列表因定长而有效期较短的问题,采取了变长结果列表和定长距离阈值的更新策略,通过提高局部更新的有效性以减少初始化计算的次数,并利用栅格索引特性提出了基于扩展外包容影响区域的查询初始化方法,从而在不增加单次局部更新和初始化计算开销的前提下降低了连续性查询的总计算开销.实验证明:在对象的分布情况稳定时,优化策略的计算开销约为基于概念划分的定长列表方法的70%,而在对象分布发生变化时优势更为明显. The continuous group nearest neighbor query algorithm basing on the conceptual partitio ning method used a result object list of fixed length, which is easy to be invalidated. To prolong the period of the result list's validity, an updating strategy with varied-length result list and fixed distance threshold was adopted, so as to reduce the times of initializing the query. Moreover, an initializing strategy using the extended bounding influence region depending on the grid index is proposed. With the two strategies, the CPU cost of continuous query is reduced without increasing the cost of either initialization or updates of result object list in one cycle. The experiment result shows that the CPU cost with the optimizing strategies can be about 70 ~ of the conceptual partitioning method when the distribution of objects is stable, and the optimizing is more obvious when the distribution changes during the continuous query.
作者 潘鹏 卢炎生
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第9期13-16,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 时空数据库 组最近邻 连续性查询 运动对象 结果列表 栅格索引 spatio-temporal database group nearest neighbor continuous query moving objects result object list grid index
  • 相关文献

参考文献10

  • 1Papadias D, Shen Q, Tao Y, et al. Group nearest neighbor queries [C] //Proc ICDE. Boston: IEEE Computer Society, 2004: 301-312.
  • 2Iwerks G S, Samet H, Smith K P. Maintenance of K-nn and spatial join queries on continuously moving points[J]. ACM Transaetions on Database Systems, 2006, 31(2): 485-536.
  • 3Mouratidis K, Papadias D, Bakiras S, et al. A threshold-based algorithm for continuous monitoring of k nearest neighbors[J]. IEEE Trans on TKDE, 2005, 17(11): 1 451-1 464.
  • 4Li Yifan, Yang Jiong, Han Jiawei. Continuous Knearest neighbor search for moving objects[C]//Inttl Conference on SSDBM. Santorini, Greece:IEEE Computer Society, 2004:123-126.
  • 5Yu X, Pu K Q, Koudas N. Monitoring K-nearest neighbor queries over moving objects [C] // Proc ICDE. Tokyo: IEEE Computer Society, 2005: 631- 642.
  • 6张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 7Wu K L, Chen S K, Yu P S. Incremental processing of continual range queries over moving objects[J]. IEEE Trans on TKDE, 2006, 18(11): 1 560-1 575.
  • 8Xiong X, Mokbel M F, Aref W G. SEA-CNN: scalable processing of continuous K-nearest neighbor queries in spatio temporal databases [C] // Proc ICDE. Tokyo: IEEE Computer Society, 2005: 643- 654.
  • 9Xiong X, Mokbel M F, Aref WG. LUGrid.. update tolerant grid-based indexing for moving objects[C]// Proc MDM. Tokyo: IEEE Computer Society, 2006: 13-26.
  • 10Mouratidis K, Hadjieleftheriou M, Papadias D. Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring[C]//Proc SIGMOD. Baltimore, Maryland: ACM Press, 2005 : 634-645.

二级参考文献101

  • 1Papadopoulos A.N., Manolopoulos Y.. Performance of nearest neighbor queries in R-trees. In: Proceedings of ICDT, Delphi, Greece, 1997, 394~408.
  • 2An N., Yang Zhen-Yu, Sivasubramaniam A.. Selectivity estimation for spatial joins. In: Proceedings of ICDE, Heidelberg, Germany, 2001, 368~375.
  • 3Sun Chengyu, Agrawal D., Abbadi A.E.. Selectivity estimation for spatial joins with geometric selections. In: Proceedings of EDBT, Prague, Czech Republic, 2002, 609~626.
  • 4Kamel I., Faloutsos C.. Parallel R-trees. In: Proceedings of SIGMOD, San Diego, California, 1992, 195~204.
  • 5Papadopoulos A., Manolopoulos Y.. Similarity query processing using disk arrays. In: Proceedings of SIGMOD, Seattle, Washington, USA, 1998, 225~236.
  • 6Koudas N., Faloutsos C., Kamel I.. Declustering spatial databases on a multi-computer architecture. In: Proceedings of EDBT, Avignon, France, 1996, 592~614.
  • 7Brinkhoff T., Kriegel Hans-Peter, Seeger B.. Parallel processing of spatial joins using R-trees. In: Proceedings of ICDE, New Orleans, Louisiana, 1996, 258~265.
  • 8Papadopoulos A., Manolopoulos Y.. Parallel processing of nearest neighbor queries in declustered spatial data. In: Proceedings of ACM-GIS, Rockville, MD, 1996, 35~43.
  • 9Papadopoulos A., Manolopoulos Y.. Nearest neighbor queries in shared-nothing environments. Geoinformatica, 1997, 1(4): 369~392.
  • 10Fu X., Wang D., Zheng W.. GPR-tree: A global parallel index structure for multiattribute declustering on cluster of work- stations. In: Proceedings of APDC'97, Shanghai, China, 1997, 300~306.

共引文献94

同被引文献39

  • 1刘永山,薄树奎,张强,郝忠孝.多对象的最近邻查询[J].计算机工程,2004,30(11):66-68. 被引量:8
  • 2Roussopoulos N,Kelley S,Vincent F.Nearest neighbor queries[C]//Proc of the ACM SIGMOD International Conference on Managemerit of Data,San Jose,CA,1995:71-79.
  • 3Hjaltason G R,Samet H.Distance browsing in spatial databases[J].ACM Transactions on Database Systems,1999,24(2):265-318.
  • 4Kollios G,Gunopulos D,Tsotras V J.Nearest neighbor queries in a mobile environment[C]//Proc of the International Workshop on SpatioTemporal Database Management,Edinburgh,Scotland,1999:119-134.
  • 5Song Z,Roussopoulos N.K-nearest neighbor search for moving query point[C]//Proc of the 7th International Symposium on Spatial and Temporal Databases,Redondo Beach,California,USA,2001:79-96.
  • 6Tao Y,Papadias D,Shen Q.Continuons nearest neighbor search[C]//Proc of the 28th International Conference on Very Large Data Bases,Hong Kong,China,2002:287-298.
  • 7Tao Y,Papadias D.Time-parameterized queries in spatio-temporal databases[C]//Proc of the ACM SIGMOD International Conference on Management of Data,Madison,Wisconsin,USA,2002:334-345.
  • 8Raptopoulou K,Papadopoulos A N,Manolopoulos Y.Fast nearest neighbor query processing in moving object databases[J].Geolnformatica,2003,7(2):113-137.
  • 9Papadias D,Shen Q,Tao Y,et al.Group nearest neighbor queries[C]//Proc of the 20th International Conference on Data Engineering,Boston,USA,2004:301-312.
  • 10Li H,Lu H,Huang B,et al.Two ellipse-based pruning methods for group nearest neighbor queries[C]//Proe of the 13th Annual ACM International Workshop on Geographic Information Systems,Bermea,Germany,2005:192-199.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部