期刊文献+

具有概周期系数的两种群第Ⅲ类功能反应的全局渐近稳定性 被引量:2

Global asymptotic stability of the type Ⅲ functional response of two-species model with almost periodic coefficients
下载PDF
导出
摘要 利用微分不等式和比较定理,讨论了具有概周期系数的Holling-Ⅲ类二维捕食系统的概周期解的存在唯一性与全局渐近稳定性,并得到了其正概周期解的存在惟一性与全局稳定的充分条件. The type Ⅲ functional response of two-species model with almost periodic coefficients is discussed. Making of the theory of differential inequality and constructing some suitable Liapunov functional obtain sufficient conditions that guarantee the existence of a global asymptotical stable almost periodic solution of the system.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期6-11,共6页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10371050) 吉林大学985项目
关键词 捕食食饵模型 概周期解 LIAPUNOV函数 全局渐近稳定性 predator-prey model almost periodic solution Liapunov function global asymptotical stability
  • 相关文献

参考文献5

二级参考文献16

  • 1叶丹,范猛.具有脉冲的三种群捕食者-食饵链系统正周期解的存在性[J].东北师大学报(自然科学版),2004,36(4):1-10. 被引量:8
  • 2宋国柱,数学分析教程.下,1990年
  • 3马知恩,种群生态学的数学建模与研究,1996年
  • 4陈兰荪,非线性生物动力学系统,1993年
  • 5LEVIN S A.Dispersion and population interaction[J].Amer Nat,1974,108:207-228.
  • 6GOPALSAMY K.Stability and oscillations in delay differential equations of population dynamics[M].Dordrecht:Kluwer Academic Publishers,1992:20-32.
  • 7TAKEUCHI Y.Conflict between the need to forage and the need to avoid competition:persistence of two-species model[J].Math Biosci,1990,99:181-184.
  • 8ZENG GUANG ZHAO,CHEN LANSUN.Persistence and periodic orbits for two-species nonautonompus diffusion Lotka-Volterra models[J].Math Comput Modelling,1994,20:69-80.
  • 9ZHANG JINGRU,CHEN LANSUN,CHEN XIUDONG.Persistence and global stability for two-species nonautonomous competition Lotka-Volterra patch-system with time delay[J].Nonlinear Anal,1999,37:1 019-1 028.
  • 10WEI FENGYING,WANG KE.Asymptotically periodic solution of N-species cooperation system with time delay[J].Nonlinear Anal:Real World Appl,2006,7:591-596.

共引文献45

同被引文献22

  • 1伏升茂,温紫娟,宋雪梅.互惠Shigesada-Kawasaki-Teramoto模型整体解的存在性和稳定性[J].兰州大学学报(自然科学版),2006,42(4):121-126. 被引量:6
  • 2Xiao Haibin Department of Mathematics, Ningbo University, Zhejiang 315211,China,Department of Mathematics, Nanjing University, Jiangsu 210093,China..POSITIVE EQUILIBRIUM AND ITS STABILITY OF THE BEDDINGTON-DEANGELIS'TYPE PREDATOR-PREY DYNAMICAL SYSTEM[J].Applied Mathematics(A Journal of Chinese Universities),2006,21(4):429-436. 被引量:7
  • 3祝文壮,冀书关,刘振华.一类二阶微分方程概周期解的存在性[J].吉林大学学报(理学版),2007,45(1):5-10. 被引量:1
  • 4Bochner S. Continuous Mappings of Almost Automorphic and Almost Periodic Functions [ J ]. Proc Natl Acad Sci USA, 1964, 52(4) : 907-910.
  • 5HANG Jin, ZHANG Jun, XIAO Ti-jnn. Composition of Pseudo Almost Automorphic and Asymptotically Almost Automorphic Functions [ J]. J Math Anal Appl, 2008, 340: 1493-1499.
  • 6LIANG Jin, N'Guerekata G M, XIAO Ti-jun, et al. Some Properties of Pseudo-Almost Automorphic Functions and Applications to Abstract Differential Equations [ J ]. Non Anal, 2009, 70 (7) : 2731-2735.
  • 7Lloyd N G. Degree Theory [ M]. Cambridge: Cambridge University Press, 1978.
  • 8HONG Jia-lin, Obaya R, Gil A S. Exponential Trichotomy and a Class of Ergodic Solutions of Differential Equations with Ergodic Perturbations [J]. Appl Math Lett, 1999, 12(1): 7-13.
  • 9Shigesada N,Kawasaki K,Teramoto E.Spatial Segregation of Interacting Species[J].J Theor Biology,1979,79(1):83-99.
  • 10Shim S A.Uniform Boundedness and Convergence of Solutions to the Systems with Cross-Diffusion Dominated by Self-Diffusion[J].Nonlinear Analysis:Real World Applications,2003,4(1):65-86.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部