期刊文献+

长记忆随机波动模型的估计与波动率预测——基于中国股市高频数据的研究 被引量:10

Estimating Long Memory Stochastic Volatility Model and Forecasting Using Volatility Based on High Frequency Data from Chinese Stock Markets
下载PDF
导出
摘要 为了有效捕捉中国股市波动率的长记忆性,提高远期波动率的预测精度,本文基于中国股市高频数据建立了长记忆随机波动模型,检验高频数据中时变的"日历效应"成分的频率,有效地对"日历效应"进行滤波。使用频域内拟极大似然方法估计LMSV模型参数,为了提高计算效率应用混沌优化算法进行最优搜索。对比了高频数据直接建模和已实现波动率方法建模的预测结果发现,通过高频数据估计的LMSV模型可以很好保留高频数据中所包含的信息量,克服信息丢失问题,预测结果要优于已实现波动率方法建模预测的结果。 To catch long memory character of china stock market volatility and improve forecasting precision of long-rang, a long memory stochastic volatility model based on high frequency return of Chinese stock markets is established, a new method of detecting and fitting the calendar effect component is introduced firstly. Secondly, estimating long memory stochastic volatility model using the frequency domain quasi maximum likelihood estimation and chaos optimization algorithm, which can improve the efficiency. At last, we compare the forecasting performance of the model using high frequency return and the model using realized volatility, finding that LMSV model using high frequency return can preserve the information of the data and improve estimation and forecasting precision of long-rang.
出处 《系统工程》 CSCD 北大核心 2008年第7期29-34,共6页 Systems Engineering
基金 国家杰出青年科学基金资助项目(70225002)
关键词 LMSV模型 高频数据 ARFIMA模型 日历效应 已实现波动性 LMSV Model High Frequency Data ARFIMA Model Calendar Effect Realized Volatility
  • 相关文献

参考文献17

  • 1Granger C W J, Joyeux R. An introduction to long memory time series models and fractional differencing [J]. Journal of Time Series Analysis, 1980, 1: 15- 39.
  • 2Hosking J. Fractional differencing[J]. Biometrika, 1981,68:165-176.
  • 3Bollerslev T, Mikkelsen H O. Modeling and pricing long memory in stock market volatility[J]. Journal of Econometrics, 1996,73 : 151 - 184.
  • 4Bailtie R T, Bollerslev T, Mikkelsen H O. Fractionally integrated generalised autoregressive conditional heteroskedastieity[J]. Journal of Econometrics, 1996, 74:3-30.
  • 5Wright J H. A new estimator of fractionally integrated stochastic volatility model[J]. Economics Letters, 1999,63:295-3031.
  • 6Josu A. Gaussian semiparametric estimation in ling memory in stochastic volatility and signal plus noise models [J]. Journal of Econometrics, 2004,119 (1): 131-1541.
  • 7Breidt F J, Crato N, De Lima P. On the detection and estimation of long memory in stochastic volatility [J]. Journal of Econometrics, 1998,83 : 325 - 348.
  • 8Deo R,Hurvich C,Lu Y. Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment [J]. Journal of Econometrics, 2006,131 : 29- 58.
  • 9Brockwell P,et al. Time series: theory and methods (second ed) [M]. Berlin : Springer, 1996.
  • 10张建雄,唐万生.基于混沌遗传算法的一类非线性两层混合整数规划问题求解[J].系统工程理论方法应用,2005,14(5):429-433. 被引量:14

二级参考文献9

共引文献13

同被引文献164

引证文献10

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部