摘要
证明了如下结果:如果题设方程有非平凡整数解,D只有唯一的6k+1形素因子p,则D要么没有其他素因子,要么任何其他素因子q都满足(3p/q)=1或(p/q)=1.
To prove that if the Diophantine equation mentioned in the title has a nontrivial solution (x ,y)in integers and D has only one prime factor p of the form 6k+1, then either the integer D has no other prime factors or any prime factor q of D satisfies (3p/q)=1 or (p/q)=1.
出处
《肇庆学院学报》
2008年第5期17-21,共5页
Journal of Zhaoqing University
基金
肇庆学院青年科学研究基金资助项目(0724)