期刊文献+

离散随机序列加权和的若干极限定理 被引量:1

Some limit behavior for weighted sums of discrete random variables
下载PDF
导出
摘要 设{X_n,n≥0}是任意离散随机变量序列,{a_(nk),0≤k≤n,n≥0}.是一常数阵列,我们引入随机序列渐近对数似然比的概念,作为表征随机序列的真实概率测度P与参考测度Q之间的差异的度量,用分析方法,得到了随机序列Jamison型加权和的若干随机偏差定理. Consider {Xn, n ≥0} be a sequence of arbitrary discrete random variables and {ank, 0 ≤ k ≤ n, n ≤0} an arrary of constants, we introduce the notion of asymptotic log-likelihood ratio of stochastic sequences, as a measure of dissimilarity between true probability measure P and reference measure Q, and establish some strong deviation theorems for the Jamison type weighted sums random variables by means of analytical method.
作者 汪忠志 唐健
出处 《纯粹数学与应用数学》 CSCD 北大核心 2008年第3期417-423,共7页 Pure and Applied Mathematics
基金 国家自然科学基金(10571076) 安徽省教育厅科研基金(2006KJ064B)
关键词 随机序列加权和 渐近对数似然比 A.S.收敛 矩母函数 weighted sums of random variables, asymptotic log-likelihood ratio, a.s. convergence, moment generating function
  • 相关文献

参考文献6

  • 1Liu Wen. Relative entropy densities and a class of limit theorems of m-valued random variables [J]. Ann. Probab., 1999,18(2):269-276.
  • 2Liu Wen. A class of small deviation theorems for the sequence of nonnegative integer-valued random variables [J]. Taiwan Residents Journal of Mathematics, 1997,1(3):291-302.
  • 3杨卫国.关于强极限定理的若干研究及应用[D].上海:上海交通大学,2006.
  • 4汪忠志.关于任意离散随机序列的一个强偏差定理(英文)[J].纯粹数学与应用数学,2005,21(4):341-344. 被引量:2
  • 5Jamison B, Orey S, Pruitt W. Convergence of weighted averages of independent random variables [J]. Gebiete:Z. Wahr-Verb, 1965,4:40-44.
  • 6Adler Y, Rosasky A. Some general strong laws for weighted sums of stochastically domalnated random variables [J]. Stochastic Analysis and Application. 1987, 5(1):1-16.

二级参考文献4

  • 1Liu Wen. A kind of Strong Deviation Theorems for the sequence of nonnegative integer-valued random variables [J]. Statistics & Probability Letters, 1997, 32(2): 269-276.
  • 2Wen Liu, Weiguo Yang. The Markov Approximation of the Sequences of N-valued Random Variables and A Class of Some Deviation Theorems[J]. Stochastic Probability and Their Applications, 2000,89(1):117-130.
  • 3Van de Geer S. Exponential inequalities for martingales, with applications to maximum likelihood estimation for counting processes[J]. Ann. Stat. , 1995,23(4):1779-1801.
  • 4Chung K L. A Course in Probability Theory [M]. 2nd ed. New York: Academic Press,1988.

共引文献1

同被引文献7

  • 1刘文.强偏差定理与分析方法[M].北京:科学出版社,2002.
  • 2Lai T L. Summability methods for independent identically distributed random variblesEJ~. Proe. Amer. Math.Soc. , 1974, 45(2): 253--261.
  • 3Jain N C. Tail probabilities for sums of independent Banach space valued random variables[J]. Z. Wahrschein- lichkeitsheorie verw. Gebiete, 1975,33 : 155-- 166.
  • 4Gaposhkin V F. The law of large numbers for moving averages of independent random[J]. Mathematicheskie Zametki, 1987,42(1) : 124-- 131.
  • 5Li Xin Z. Complete convergence of moving average processes under dependent assumptions[J]. Stat. Probab. Letter. 1996, 30:165--170.
  • 6Ehud L, Rann S. Relative entropy in sequential decision problems[J]. Journal of Mathematical Economics, 2000,33 : 425--439.
  • 7汪忠志,杨卫国.关于相依离散随机序列的若干强偏差定理[J].系统科学与数学,2011,31(8):932-942. 被引量:7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部