期刊文献+

具线性增长系数的拟线性挠射问题弱解的正则性

The regularity of weak solutions for the quasi-linear diffraction problems with linear growth coefficients
下载PDF
导出
摘要 讨论了具特殊主部和线性增长系数的n维拟线性抛物挠射问题,利用估计和平均函数方法,证明了弱解在内边界附近的一些正则性质.把这些正则性结果从线性问题推广到这种拟线性问题. N-dimeansional quasi-linear diffraction problems with special principle part and linear growth coefficients are considered. By using estimates and average functions methods, the authors prove some regularity properties of the weak solutions in the neighborhood of the inner boundary, and extend these regularity results from linear problem to the special quasi-linear one.
出处 《纯粹数学与应用数学》 CSCD 北大核心 2008年第3期511-520,共10页 Pure and Applied Mathematics
基金 四川教育学院科研基金
关键词 拟线性抛物方程 间断系数 弱解 正则性 quasi-linear parabolic equations, disconinuous coefficients, weak solution, regularity
  • 相关文献

参考文献9

  • 1Evans L C. A free boundary problem: The flow of two immiscible fluids in a one-dimensional porous medium, I [J]. Indiana Univ. Math. J., 1977, 26(5):914-932.
  • 2白东华,谭启建.一类具两条自由边界的自由边值问题[J].四川大学学报(自然科学版),1993,30(2):154-163. 被引量:4
  • 3白东华,谭启建.具间断系数的拟线性抛物型方程的初边值问题[J].四川大学学报(自然科学版),1991,28(1):1-14. 被引量:2
  • 4Liang J. The one-dimensional quasi-linear verigin problem [J]. J. Partial Differential Equations, 1991, 4(2):74- 96.
  • 5谭启建,冷忠建.平面非牛顿流体在m>1时的径向流动[J].纯粹数学与应用数学,2003,19(4):379-384. 被引量:1
  • 6Kamynin L I. The method of heat potentials for a parabolic equation with discontinuous coefficients [J]. Sib, Mat. Z., 1963, 4:1071-1105(in Russian).
  • 7Ladyzenskaya O A, Solonnikov V A, Ural'ceva N N. Linear and Quasi-linear Equations of Parabolic Type [M]. USA:American Mathematical Society, Providence, RI, 1968.
  • 8Ladyzenskaya O A, Ural'ceva N N. Linear and Quasi-Linear Elliptic Equations [M]. New York: Academic Press, 1968.
  • 9Ladyzenskaya O A, Ryvkind V Ja, Ural'ceva N N. Solvability of diffraction problems in the classical sense [J]. Trudy Mat. Inst. Steklov. 1966, 92:116-146(in Russian).

二级参考文献11

  • 1姜礼尚,北京大学学报,1986年,3期
  • 2夏宗伟,1984年
  • 3白东华,四川大学学报,1991年,28卷,1期,1页
  • 4李竞生,多孔介质流体动力学
  • 5Bai Donghua. A free boundary problem governed by nonlinear degenerate equations of parabolic type [J]. J partial Differential Equations, 1992,5(2):37~52.
  • 6Pascal H. some problem related to the quantitative evaluation of physical properties of the porous medium from flow tests with non-Newtonian fluid [J]. Int. J. Engng. Sci, 1985,23 (3): 307~ 318.
  • 7Ladyzenkaya O A, Solonnikov V A, Ural'ceva N N. Linear and quasilinear elliptic equations[M].Translated by Scripta Teachnica, Inc. 1986.
  • 8Bai Donghua, Tang Xianjiang. A parabolic quasi-variational inequlity connected with non-stationary filtration problem[J]. Chinese Annals of Mathematics, 1985,6(6):637~644.
  • 9Ladyzenkaya O A, Solonnikov V A,Ural'ceva N N. Linear and quasilinear equations of parabolictype[M]. Trans. Math. Mono. 23, American Math. Soc,Providence RI,1968.
  • 10Friedman A,Jensen R. A parabolic quasi-variational inequlity arising in hydroulics[J]. Anna Scuala,Norm sup pisa, 1975,1 (11): 421~468.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部