期刊文献+

图的联结数与分数κ-消去图 被引量:2

Binding number conditions for fractional k-deleted graphs
下载PDF
导出
摘要 设G是一个图,若对于图G的任一条边e,G-e都存在一个分数k-因子,则称G是一个分数k-消去图.若k=2,则称分数k-消去图为分数2-消去图.本文证明了当bind(G)≥2,并且δ(G)≥3时,G是分数2-消去图. A graph G is fractional k-deleted if there exists a fractional k-factor for any edge of G. If k = 2, then a fractional k-deleted graph is called a fractional 2-deleted graph. It is proved that G is fractional 2-deleted if δ(G) ≥ 3 and bind(G)≥2.
出处 《纯粹数学与应用数学》 CSCD 北大核心 2008年第3期551-554,共4页 Pure and Applied Mathematics
基金 江苏省高校自然科学基础研究项目(07KJD110048)
关键词 联结数 分数κ-因子 分数κ-消去图 graph, binding number, fractional k-factor, fractional k-deleted graph
  • 相关文献

参考文献4

二级参考文献21

  • 1周思中.分数(g,f)-2-覆盖图和分数(g,f)-2-消去图[J].广西科学,2004,11(3):177-178. 被引量:1
  • 2J.A.Bondy, U.S.R.Murty. Graph Theory with Application. Macnmillan, London, 1976.
  • 3Edward R.Schinerman, D.H.Ullman. Fractional Graph Theory. John Wiley and Son,Inc. New York, 1997.
  • 4杨景波,康文明.分数(g,f)-因子覆盖图和消去图.中国运筹学会第六届学术交流会论文集,Global-Link出版社,2000年,450-454.
  • 5Pulleyblank.w.R. Fractional Matckings and the Edmonds-Gallai Theorem[J]. Disc. Appl. Math. , 1987,16:51-58.
  • 6Edwark R. Scheinerman and Daniel H. Ullman. Fractional Graph Theory[M]. New York:John Wiley and Sonc,Inc. , 1997.
  • 7Yang Jingbo. Fractional (g,f)- Covered Graph and Fractional (g,f)- Deleted Graph[A]. Proceedings of the Sixth National Conference of Operation Research Society of China[C]. 2000,451-454.
  • 8Yang Jingbo, Ma Yinghong, Liu Guizhen. Fractional (g, f)- Factor of Graphs[J]. Acta Appl. Math. JUC.2001,16(4) :385-390.
  • 9Zhang Lanju,Liu Guizhen. Fractional κ- Factor fo Graphs[J]. J. Sys. Sei. and Math. Scis. 2001.
  • 10Liu Guizhen. On (g,f)- Factor and Factorization[J]. Acta Mathematica Sinica, 1994,37: 230-236.

共引文献24

同被引文献13

  • 1周思中.图的联结数与分数因子存在性[J].江苏科技大学学报(自然科学版),2006,20(1):27-31. 被引量:2
  • 2BONDY J A,MURTY U S R. Graph theory with applications[ M]. New York: Macmillan Press,1976.
  • 3SCHEINERMAN E R, ULLMAN D H. Fractional graph theory[ M ]. New York: John Wiley and Sons, 1997.
  • 4YANG Jingbo. Fractional (g, f) - covered graph and fractional (g, f) - deleted graph[ C]. Proceedings of the Sixth National Conference of Operation Research Society of China. Shanghai : Shanghai University Press ,2000.
  • 5WOODALL D R. The binding number of a graph and its anderson number[ J]. Combin Theory Ser B ,1993,15:225 -255.
  • 6LIU Guizhen,ZHANG Lanju. Toughness and the existence of fractional k -factors of graphs[J]. Discrete Mathematics,2008,308:1 741 - 1748.
  • 7Bondy J A, Murty U S R. Graph Theory with Applications[ M ]. New York: Macmillan Press Lid, 1976.
  • 8Scheinerman E R,Ullman D H. Fractional Graph Theory[ M]. New York: John Wiley and Sons,1997.
  • 9Woodall D R. The binding number of a graph and its anderson number[J]. Combin Theory Ser B, 1993, 15 225 - 255.
  • 10Liu Guizhen, Zhang Lanju. Toughness and the existence of fractional k - factors of graphs [ J ]. Discrete Mathematics,2008, 308 : 1741 - 1748.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部