有限域上B_l型Chevalley群的二元生成
Two-element generation of Chevalley groups of B_l type over finite fields
摘要
证明了有限域上B_l型Chevalley群可由两个元素生成
Chevalley groups of type Bl over finite fields are shown to be generated by two elements
出处
《纯粹数学与应用数学》
CSCD
北大核心
2008年第3期622-624,共3页
Pure and Applied Mathematics
参考文献10
-
1Steinberg R. Generators for simple groups [J]: Canad. J. Math. 1962, 14:277-283.
-
2Stanek P. Two-element generation of the symplectic groups [J].Trans. Amer. Math. Soc., 1963, 108:429-436.
-
3Ishibahi H. Small system of generators of isotropie unitary groups over finite fields of characteristic not two [J]. J. Algebra, 1985, 93:324-331.
-
4Ishibahi H. Generation of classical groups over finite fields [J]. Linear Algebra Appl., 1983, 51:9-15.
-
5Ishlbahi H, Earnest A G. Two-element generation of orthogonal groups over finite fields [J].J.Algebra, 1994, 165:164-171.
-
6Earnest A G, Catalpa R A, Schmidt U S, et al. Remarks on the generation of orthogonal groups over finite fields [J]. J. Algebra, 1995, 176:585-590.
-
7高有,游宏.特征不为2的有限域上酉群的极小生成元集[J].系统科学与数学,1999,19(1):46-50. 被引量:6
-
8王登银.有限域上F_4和G_2型Chevalley群的二元生成[J].系统科学与数学,2003,23(1):117-119. 被引量:2
-
9Humphreys J E. Introduction to Lie algebras and representation theory [M]. New York: Springer-Verlag, 1972.
-
10Carter R W. Simple Groups of Lie Type [M]. New York:Wiley Interscience, 1972.
二级参考文献10
-
1[1]Humphreys J E. Introduction to Lie Algebras and Representation Theory. Springer-Verlag, 1972.
-
2[2]Carter R W. Simple Groups of Lie Type. Wiley Interscience, New York, 1972.
-
3[3]Ishibahi H. Small system of generators of isotropic unitary groups over finite fields of characteristic not two. J. Algebra, 1985, 93: 324-331.
-
4[4]You Hong and Gao You. Two-Element Generation of Unitary Groups Over Finite Fields. Proceedings of the 1996 Beijing International Conferences on Group Theory, Springer-Verlag Singapore Pte. Lid, 1998, 49-57.
-
5[5]Ishibahi H. Generation of classical groups over finite fields. Linear Algebra Appl, 1983, 51: 9-15.
-
6[6]Ishibahi H and Earnest A G. Two-element generation of orthogonal groups over finite fields. J.Algebra, 1994, 165: 164-171.
-
7[7]Earnest A G, Catalpa R A, Schmidt U S and Stewart G T. Remarks on the generation of orthogonal groups over finite fields. J. Algebra, 1995, 176: 585-590.
-
8[8]Stanek P. Two-element genetation of the symplectic groups. Trans. Amer. Math. Soc., 1963, 108:429-436.
-
9Wan Z X,Studentlitteratur Chartwell Bratt,1993年
-
10华罗庚,典型群,1963年
共引文献5
-
1张波,王登银,张丽红.整数环上一些典型群的二元生成[J].中国矿业大学学报,2006,35(6):833-836. 被引量:1
-
2张义清,管致锦,吕彦明.基于置换群的可逆网络级联[J].兰州理工大学学报,2008,34(4):101-104.
-
3王登银.WEYL群的二元生成[J].数学杂志,2002,22(4):402-404.
-
4金永容.置换群的二元生成[J].安徽教育学院学报,2002,20(6):14-15. 被引量:4
-
5林斐.关于置换群的二元生成[J].漳州师范学院学报(自然科学版),2003,16(3):18-20. 被引量:2
-
1金永容.D_l(F)在B_l(F)中的扩群及其泛正规性[J].安徽教育学院学报,2001,19(3):4-5.
-
2胡建华,刘国华.有限域上型A_1的Chevalley群之间的同态[J].上海理工大学学报,2009,31(4):307-310. 被引量:4
-
3游宏.由换位子生成的Chevalley群的子群[J].东北师大学报(自然科学版),1992,24(2):9-13.
-
4宋科研,陈贵云.再论能表示为三个真子群的并的群[J].西南大学学报(自然科学版),2009,31(4):6-7. 被引量:8
-
5金永容.置换群的二元生成[J].安徽教育学院学报,2002,20(6):14-15. 被引量:4
-
6秦健秋,张庆德.涉及微分多项式和多项式的亚纯函数正规族[J].四川师范大学学报(自然科学版),2008,31(1):75-79.
-
7王霞霞,吴洪博.BL-代数的余零化算子及其BL同态像[J].吉林大学学报(理学版),2014,52(6):1112-1118. 被引量:3
-
8王玉敬,贾雨亭.一类Lie代数g(A)的根系[J].河北师范学院学报(自然科学版),1990(1):17-24.
-
9曹洪平.例外型Chevalley群G_2(q)的h函数值[J].数学年刊(A辑),2004,25(6):753-760.
-
10郑业龙,李瑞虎.关于Chevalley群扩群的两点继续研究[J].纯粹数学与应用数学,2000,16(1):84-88.