期刊文献+

LMI优化问题中的择一性定理(英文) 被引量:1

Theorems of alternative for LMI optimization
下载PDF
导出
摘要 讨论了LMI优化问题中的4个择一性定理,每种类型的择一性定理包含2个线性不等式和(或)等式系统,一个原始系统和一个对偶系统.弱择一性定理说明2系统中至多只有其一有解;基于凸集分离理论得到的强择一性定理说明2系统有且仅有其一有解. Four alternative theorems for LMI optimization are discussed. Every typical alternative theorem is associated with two systems of linear inequalities and ( or ) equalities, a primal system and a dual one. The weak alternative theorems assert that two systems at most one of which has a solution. The strong alternative theorems are discussed by using separation theorem and assert that either the primal system has a solution, or the dual system has a solution, but never both.
出处 《高师理科学刊》 2008年第5期8-10,共3页 Journal of Science of Teachers'College and University
基金 the nature science foundation of universities of Jiangsu province(07KJB110090) the nature science foundation of Nantong University(07Z002) Research on Higher Education of Nantong University(08GJ007,08GJ029)
关键词 弱择一性定理 强择一性定理 线性矩阵不等式 LMI优化 weak alternatives strong alternatives linear matrix inequality LMI optimization
  • 相关文献

参考文献8

  • 1Yuan Y X, Sun W Y. Optimization theories and methods [M]. Beijing: Sciences Press, 1997.
  • 2Craven B D, Koliha J J. Generalizations of Farkas' theorem [J]. SIAM Journal of Mathematical Analysis, 1977 ( 8 ) : 983-997.
  • 3Lasserre J B. A new Farkas lemma for positive semidefinite matrices [J]. IEEE Trans. Aut. Control, 1995, 40 ( 6 ) : 1131-1133.
  • 4Dax A, Sreedharan V P. Theorems of the alternative and duatity [J]. Journal of optimization theory and applications, 1997,94 ( 3 ): 561-590.
  • 5Fan J Y. Generalized separation theorems and Fracas' s lemma [J]. Applied Mathematics Letters, 2005 ( 18 ) : 791-796.
  • 6Vandenberghe L, Boyd S. Semidefinite programming [J]. SIAM Rev., 1996 ( 38 ) : 49-95.
  • 7Wolkowicz H, Saigal R, Vandenberghe L. Handbook of Semidefinite Programming [M]. Boston-Dordrecht-London: Kluwer Academic Publishers Publishers, 2000.
  • 8Boyd S, Vandenberghe L. Convex optimization [M]. Cambridge: Cambridge Univ.Press, 2004.

同被引文献7

  • 1Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge: Cambridge Univ. Press, 2004.
  • 2Wolkowicz H, Saigal R, Vandenberghe L. Handbook of semidefinite programming[ M ]. Boston-Dordrecht-London: Kluwer Academic Publishers, 2000.
  • 3Alizade F. Interior Point Methods in Semidefinite Programming with Application to Combinatorial Optimization[J ]. SIAM. Optim., 1995, 5 (1) : 13-51.
  • 4Wang Jianhong, Zhang Zhenjuan, Gao Yanbo. Lyapunov Stability Analysis of Linear Time-Invariant Systems: Convex Optimization Approach/C]//Proe.oflEEE Conference on Intelligent Control and Automation, Chongqing: [s.n.]., 2008 : 4 129-4 131.
  • 5Wang Jianhong, Li Xun, Ge Yaping, et al. An LMI optimization approach to Lyapunov stability analysis for linear time-invariant systcms[C]//Proc, of IEEE Conference on Decision and Control, Yantai: [s.n.], 2008 : 3 044-3 048.
  • 6王建宏,孙建平,刘萌.半定规划与线性规划之异同[J].南通大学学报(自然科学版),2007,6(3):19-22. 被引量:1
  • 7王文庆,王建宏.半定规划的一种不可行内点算法[J].高师理科学刊,2009,29(2):1-4. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部