期刊文献+

乘法扰动下广义极分解的扰动恒等式

Perturbation identities for the generalized polar decomposition under multiplicative perturbation
下载PDF
导出
摘要 设A是m×n(m≥n)且秩为r的复矩阵.存在m×n次酉矩阵Q和n×n半正定矩阵H使得A=QH,此分解称为A的广义极分解.运用奇异值分解,给出了乘法扰动下,矩阵的广义极分解在任意酉不变范数下的扰动恒等式. LetA be an m × n (m ≥ n) complex matrix, which rank is r. It is known that there is a generalized polar decomposition A =QH. By SVD decomposition derived the perturbation identities for the generalized polar decomposition with respect to the muhiplicative perturbation under unitarily invariant norms.
出处 《高师理科学刊》 2008年第5期13-16,共4页 Journal of Science of Teachers'College and University
基金 南通大学自然科学基金项目(06Z052)
关键词 广义极分解 扰动等式 酉不变范数 generalized polar decomposition perturbation unitarily invariant norms
  • 相关文献

参考文献5

  • 1Bhatia R. Matrix Analysis[M]. New York: Springer-Verlag, 1997.
  • 2Higham N J. Computing the polar decomposition-with applications[J]. SIAM J. Sci. Stat. Comput., 1986 ( 7 ): 1160-1174.
  • 3陈小山,黎稳.酉不变范数下极分解的扰动界[J].计算数学,2005,27(2):121-128. 被引量:8
  • 4Paige C C, Saunders M A. Toward a Generalized Singular Value Decomposition{J]. SIAM J. Numer. Anal., 1981 ( 18 ): 398-405.
  • 5Stewart G W. On the perturbation of pseudo-inverses, projections and linear least squares problems[J]. SlAM Rev., 1997 ( 19 ): 634-662.

二级参考文献11

  • 1R.Mathias, Perturbation bounds for the generalized polar decomposition, SIAM J. Matrix Anal. Appl., 14(1993), 588-597.
  • 2R.C.Li, New perturbation bounds for the unitary polar factor, SIAM J. Matrix Anal.Appl., 16(1995), 327-332.
  • 3R.C.Li, Relative perturbation bounds for the unitary polar factor, BIT, 37(1997), 67-75.
  • 4X.S.Chen, W.Li and W.Sun, Some new perturbation bounds for the genralized polar decomposition, BIT, 44(2004): 237-244.
  • 5W. Li and W. Sun, Perturbation bounds for unitary and subunitary polar factors, SIAM J. Matrix Anal. Appl., 23(2002), 1183-1193.
  • 6G.W.Stewart, Perturbation bounds for the QR factorization of a matrix, SIAM J. Numer Anal., 14(1977), 509-518.
  • 7R. Bhatia, C. Davis and F. Kittaneh, Some inequalities for commutators and on an application to spectral variation, Aequations Math. 41(1991), 70-78.
  • 8J. G. Sun, Perturbation bounds for the cholesky and QR factorizations, BIT, 31(1991),341-352.
  • 9C.Davis and W.N.Kahan, The rotation of eigenvectors by a perturbation, iii, SIAM J.Numer. Anal., 1(1970), 1-46.
  • 10R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部