摘要
The adsorption and dissociation of NH3 on Ir{110}(1×2) have been investigated using the densityfunctional calculations at a coverage of 0.25 ML. The adsorption sites, energy, and geometries were obtained for NH3, NH2, and H adsorptions on the surface. The transition state for NH3 dissociation on Ir{110}(1×2) was also identified. It was found that NH3 is adsorbed preferentially at the ridge atop site, while NH2 and H are adsorbed at the ridge bridge site. The activation barrier of NH3 dissociation is 78.4 kJ/mol, which is very close to the NH3 adsorption energy of 90.0 kJ/mol. This indicates that the desorption and dissociation of NH3 on Ir{110}(1×2) are very competitive, which is consistent with the recent experimental results.
The adsorption and dissociation of NH3 on Ir{110}(1×2) have been investigated using the density- functional calculations at a coverage of 0.25 ML. The adsorption sites, energy, and geometries were obtained for NH3, NH2, and H adsorptions on the surface. The transition state for NH3 dissociation on Ir{110}(1×2) was also identified. It was found that NH3 is adsorbed preferentially at the ridge atop site, while NH2 and H are adsorbed at the ridge bridge site. The activation barrier of NH3 dissociation is 78.4 kJ/mol, which is very close to the NH3 adsorption energy of 90.0 kJ/mol. This indicates that the desorption and dissociation of NH3 on Ir{110}(1×2) are very competitive, which is consistent with the recent experimental results.
基金
the National Natural Science Foundation of China (Grant Nos. 20725312 and 20533060)
National Basic Research Program of China (Grant No. 2007CB815201)
关键词
氨气
铱
吸附
分裂
密度泛函理论
跃迁态
density functional theory, NH3 dissociation, Ir{110}(1×2), transition state