摘要
A new type Ni-P hollow material with rod-shape is prepared by electroless deposition method and heat treatment based on the shape of Nocadia, a kind of bacteria. The material is characterized and its magnetic, electromagnetic and mechanical properties are measured. It is found that the Ni-P coating transforms from a disordered structure before hollowing to an ordered arrangement of face centered cubic (FCC) Ni after hollowing at 673 K and body centered tetragonal Ni3P occurs. After hollowing no change of the surface morphology has been found. But the cytoplasm disappears and the Ni-P layer becomes more compact. A new type hollow material with shell thickness of 150―200 nm is obtained. The saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) are enhanced to 20 emu/g, 2.7 emu/g and 117.5 Oe, respectively. The dielectric and magnetic loss are improved to 14 and 0.4, respectively. The hardness and the elastic modulus are raised to 1.80 GPa and 23.79 GPa, respectively. All show great improvement compared with those before hollowing.
A new type Ni-P hollow material with rod-shape is prepared by electroless deposition method and heat treatment based on the shape of Nocadia, a kind of bacteria. The material is characterized and its magnetic, electromagnetic and mechanical properties are measured. It is found that the Ni-P coating transforms from a disordered structure before hollowing to an ordered arrangement of face centered cubic (FCC) Ni after hollowing at 673 K and body centered tetragonal Ni3P occurs. After hollowing no change of the surface morphology has been found. But the cytoplasm disappears and the Ni-P layer becomes more compact. A new type hollow material with shell thickness of 150-200 nm is obtained. The saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) are enhanced to 20 emu/g, 2.7 emu/g and 117.5Oe, respectively. The dielectric and magnetic loss are improved to 14 and 0.4, respectively. The hardness and the elastic modulus are raised to 1.80 GPa and 23.79 GPa, respectively. All show great improvement compared with those before hollowing.
基金
the National Natural Science Foundation of China (Grant No. 50571003)
关键词
镍-磷空心材料
磁性
绝缘体
力学性质
Ni-P hollow material, magnetic properties, dielectrics, mechanical properties