期刊文献+

均匀材料和基于CT灰度值材料的股骨、胫骨有限元分析 被引量:4

The Finite Element Analysis of Femur and Tibia for Homogeneous Materials and CT Gray Value Based Materials
下载PDF
导出
摘要 为了定量分析骨量分布与载荷环境的关系,基于CT数据建立了大鼠股骨和胫骨的三维有限元模型,并分别赋予均匀的材料特性和基于CT灰度值的材料特性,用描述骨密度与力学刺激关系的算法来评估简单生理载荷下两种材料模型的有限元分析结果。结果表明,基于CT灰度值模型的有效应力和应变能密度分布与CT灰度分布比较相似,相关系数也较均匀材料模型更高;而且,基于CT灰度值模型的抗断裂能力更强;除此之外,这类模型也更符合骨再造平衡时的力学刺激均匀性假设。基于CT灰度值的有限元模型符合骨的功能适应性原理,可用于进行骨骼内部受力、变形和断裂分析,以及骨再造的数值仿真等研究。 In order to investigate the relationship between the bone amount distribution and the loading environment,the three dimensional finite element models of rat femur and tibia were established based on the CT data,and the homogeneous material property and the material property based on the CT gray value were assigned to the models respectively.The algorithms describing the relationship between the bone density and mechanical stimulus were used to evaluate the analysis results of the two kinds of models.The results shown that the distributions of the effective stress and the strain energy density from the CT gray value based model were similar to the CT gray distribution,and the correlation coefficients were higher than that of the homogeneous material model.The CT gray value based model could bear the physiological loading and avoid bone fracture.Besides,the CT gray value based model conformed to the hypothesis that the mechanical stimulus would be uniform when the bone remodeling came to equilibrium.In summary,the CT gray value based model coincides with the bone adaptation principle,and can be used to analyze the loading,distortion and fracture of the internal bone tissue,as well as the bone remodeling simulation.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2008年第5期722-727,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(60571013) 国家863高技术项目(2006AA020803) 国家重点基础研究(973)计划(2006CB705700)
关键词 有限元分析 CT 灰度值 骨再造 力学刺激 finite element analysis CT gray value bone remodeling mechanical stimulus
  • 相关文献

参考文献2

二级参考文献67

  • 1[20]Teitelbaum SL.Bone resorption by osteoclasts.Science,2000,289:1504-1508.
  • 2[21]Puzas EJ,Lewis GD.Biology of osteoclasts and osteoblasts.In:Orthopaedics.Principles of basic and clinical science,Chapter 3.Bronner F and Worrell RV,Eds,Boca Raton:CRC Press,1999.
  • 3[22]Miller SC,Bowman BM,Smith JM et al.Characterization of endosteal bone-lining cells from fatty marrow bone sites in adult beagles.Anat Rec,1980,198:163.
  • 4[23]Miller SC,Jee WSSS.The bone lining cell:a distinct phenotype?.Calcif Tissue Int,1992,41:1.
  • 5[24]Frost HM.Bone modeling and skeletal modeling errors.Springfield:CC Thomas,1973.
  • 6[25]Frost HM.Osteoporoses;new concepts and some implications for future diagnosis,treatment and research(based on insights from the Utah paradigm),Berlin:Ernst Schering Research Foundation AG,1998:7.
  • 7[26]Farost HM.Bone development during childhood,a tutorial(some insights of a new paradigm).In:Paediatric osteology,Schnau E, Ed,Amsterdam:Elsevier,1996:3.
  • 8[27]Frost HM,A determinant of bone architecture:the minimum effective strain.Clin Orthop Rel Res,1983,175:286.
  • 9[28]Mundy FR.Bone remodeling.In:Primer on the metabolic bone diseases and disorders of mineral metabolism,Fourth edition,Favus MJ, Ed,Lippincott,Williams and Wilkins,1999,Chapter 4.
  • 10[29]Cowin SC,Mechanical modeling of the stress adaptation process in bone.Calcif Tissue Int 1984,36:598.

共引文献73

同被引文献62

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部