期刊文献+

基于数值仿真方法的体外除颤电极配置分析与优化 被引量:6

Optimization and Analysis of Electrode Configurations for Transthoracic Electrical Defibrillator Based on Numerical Simulation Method
下载PDF
导出
摘要 体外电除颤器的电极配置(位置、大小、形状)直接影响着除颤效果的好坏,合理的配置模式能降低高压电刺激对皮肤和心肌的损伤、减轻患者的痛苦、提高除颤急救的成功率。运用数值仿真方法,初步研究了多种电极配置模式下(24种电极对位置、4种电极面积及3种电极形状)体外电刺激在心脏区域的电场分布情况,获得了电场分布均匀度(UNIF)、除颤电压阈值(DFT)、能量效率(EFF)等统计分析结果。结果比较显示,右上前胸-左下侧胸电极对位置、大小133cm2、形状为椭圆的电极配置方式的除颤效果最佳,优于先前报道的左前胸-右后背式圆形电极对配置模式,更适合体外电除颤的临床应用。 The efficacy of transthoracic electrical defibrillator is highly dependent on the configurations(placement,size,and shape) of surface electrodes,which can be optimized further to improve the success rate of defibrillation while minimize myocardial damage and decrease patient's pain during defibrillation. Using numerical simulation method,24 different electrode-pair placements,4 different electrode sizes,and 3 different electrode shapes were modeled and simulated with the detailed Utah torso model under an applied electrical stimulation, respectively.Furthermore,the myocardial electric-field distribution resulting from a defibrillation shock were determined and compared quantitatively with three different defibrillation criteria including the defibrillation threshold voltage(DFT),the efficiency fraction of delivered current reaching the heart(EFF),and the uniformity of current density distributions in the heart(UNIT).Our results indicated that the optimal electrode configuration(two elliptical-shape electrodes with the size of 133 cm^2 located respectively at the right-up-anterior-thorax and left-down-lateral-thorax) was more efficient than that reported in previous literature(two circular-shape electrodes located respectively at left-anterior-thorax and right-posterior-back).The electrode configuration reported in this paper is better in design for clinical application of external defibrillation.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2008年第5期728-734,共7页 Chinese Journal of Biomedical Engineering
基金 上海市重点学科建设项目资助(B112)
关键词 体外电除颤 电极配置 数值仿真 电场分布 transthoracic defibrillator electrode configurations numerical simulation electric-field distribution
  • 相关文献

参考文献8

  • 1International Liaison Committee on Resuscitation. Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care [J]. Circulation, 2000, 102: 90- 186.
  • 2Rush SR, Lepeschkin E, Gregoritsch A. Current distribution from defibrillation electrodes in homogeneous torso model [J]. Journal of Electrocardiol, 1969, 2(4) : 331 - 342.
  • 3Ideker RE, Wolf PD, Alferness C, et al. Current concepts for selecting the location, size and shape of defibrillation electrodes [J]. PACE, 1991, 14: 227-240.
  • 4Karlon WJ, Eisenberg SR, and Lehr JL. Effects of paddle placement and size on defibrillation current distribution: a three- dimensional finite element model [J]. IEEE Transactions on Biomedical Engineering, 1993, 40(3) : 246 - 255.
  • 5Krasteva VT, Papazov S. Estimation of current density distribution under electrodes for external defibrillation [J]. Biomedical Engineering Online, 2002, www. biomedical-engineering-online.com.
  • 6Johnson CR, Macleod RS, Parker SG, et al. Biomedical computing and visualization software environments [J]. Communications of the ACM, 2004, 47(11):64-71.
  • 7Macleod RS, Johnson CR, Parker SG. Construction of an inhomogeneous model of the human torso for use in computational electrocardiography [ A]. In: Proceedings of the 13th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [C]. Piscataway NJ, USA: [EEE, 1991. 688 - 689.
  • 8赖大坤,方祖祥.体外除颤时胸腔电场分布的有限元集成仿真研究[J].航天医学与医学工程,2008,21(1):50-55. 被引量:3

二级参考文献14

  • 1International Liaison Committee on Resuscitation. Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care [ J ]. Circulation, 2000, 102(S) : 90-186.
  • 2Yoke KW,Loraine H, Rosemarie E. Ventricular fibrillation and defibrillation thresholds in sheep and dogs [ J ]. Comparative Biochemistry and Physiology Part A: Molecular & Intefrative Physiology, 1998, 121 ( 1 ) : 77-82.
  • 3Tang ASL,Wolf PD, claydon F J, et al. Measurement of defibrillation shock potential distributions and activation sequences of the heart in three-dimensions [ J ]. Proceedings of IEEE, 1988, ?6(9) : 1176-1186.
  • 4Usui M,Callihan RL, Walker RG, et al. Epicardial sock mapping following monophasic and biphasic shocks of equal voltage with an endocardial lead system [ J ]. Journal of Cardiovascular Electrophysiology, 1996, 7 (2) : 322-324.
  • 5Deale OC, Ng KT, Ellen JKH, et al. Calibrated singleplunge bipolar electrode array for mapping myocardialvector fields in three dimensions during high-voltage transthoracic defibrillation [ J ]. IEEE Transactions on Biomedical Engineering, 2001, 48(8): 898-910.
  • 6Hutchinson SA, Ng KT, Shadid JN, et el. Electrical defibrillation optimization: an automated, iterative parallel finite-element approach [ J]. IEEE Transactions on Biomedical Engineering, 1997, 44(4) : 278-289.
  • 7Eason TJS, Dabasinskas A, Siekas G, et al. influence of anisotropy on local and global measures of potential gradient in computer models of defibrillation [ J]. Annual Biomedical Engineering, 1998 26 (5) : 840-849.
  • 8ChemerysVT. A numerical analysis of pulsed currentdensity distribution inside tissues under medical treatment [ J ]. IEEE Transactions on Plasma Science, 2002, 30(4) : 1532-1535.
  • 9Krasteva VT, Papazov S. Estimation of current density distribution under electrodes for external defibrillation [J]. Biomedical Engineering Online, 2002, www. biomedical-engineering-online, com.
  • 10Jaakko M, Robert P. Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields [ M]. New York: Oxford University Press, 1995: 133- 146.

共引文献2

同被引文献114

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部