期刊文献+

计及时变系统完整非线性的振荡模式分析 被引量:22

Oscillation Mode Analysis Considering Full Nonlinearity of Time-varying Systems
下载PDF
导出
摘要 提出评估非自治非线性因素对振荡行为影响程度的指标。其绝对值在定常的线性模型下严格为0,并随着时变性或非线性影响的增强而增加。据此,可量化地比较不同因素的影响。受扰轨迹完整地反映了时滞环节及离散控制等本质非线性因素和时变因素对系统动态行为的影响。采用小波脊方法估算受扰轨迹在适当宽度的时间窗口内的振荡模式,并随着窗口的滑动得到振荡模式的时间序列。用该序列可以量化非自治非线性振荡的特性,并指导对大振幅低频振荡的分析与控制。仿真发现,即使是3机9节点的小系统,其动态行为也可能不同于平衡点特征根的描述,而平衡点特征根甚至可能丢掉最危险的非线性模式。 An index to evaluate the influence on oscillation behavior of both nonlinearity and time-variance is proposed. The absolute value of the index is zero for a steady linear model, and increases with the nonlinearity and time variation factors of the model. Therefore, effects of the different factors can be compared quantitatively. Since the disturbed trajectories fully reflect the effects on dynamic behaviors of these factors including time-delay and discrete actions, the wavelet ridge algorithm is used to analyze oscillation modes within a proper time window along the trajectories. Then a time series of oscillation modes are obtained with sliding the window. This can be used to quantitatively assess time-varying nonlinear oscillations and restrain strong oscillations. Simulations on a 3-machine 9-node system show that the dynamic behaviors may be fully different from eigenvalue results at the equilibrium point, and the latter may even miss the most critical nonlinear modes.
出处 《电力系统自动化》 EI CSCD 北大核心 2008年第18期1-7,共7页 Automation of Electric Power Systems
基金 国家自然科学基金重大项目(50595413) 国家电网公司科技项目(SGKJ[2007]98&187)~~
关键词 振荡模式 非线性影响度 特征根分析 轨迹特征根 小波脊法 oscillation mode nonlinear influence degree eigenvalue analysis trajectory eigenvalue wavelet ridge algorithm
  • 相关文献

参考文献11

  • 1KUNDURP.电力系统稳定与控制[M].北京:中国电力出版社,2002..
  • 2THAPAR J, VITTAL V, KLIEMANN W, et al. Application of the normal form of vector fields to predict inter-area separation in power system. IEEE Trans on Power Systems, 1997, 12(2): 844-850.
  • 3SANCHEZ-GASCA J J, VITTAL V, GIBBARD M J, et al. Inclusion of higher order terms for small signal (modal) analysis. IEEE Trans on Power Systems, 2005, 20(4): 1886-1904.
  • 4邓集祥,华瑶,张芳.振荡模式非线性相关作用的研究[J].电力系统自动化,2003,27(16):35-39. 被引量:26
  • 5李颖晖,张保会.对Normal Form变换的多值性的分析与研究[J].电力系统自动化,2000,24(6):35-39. 被引量:7
  • 6PARIZ N, SHANECHI H M, VAAHEDI E. Explaining and validating stressed power systems behavior using modal series. IEEE Trans on Power Systems, 2003, 18(2): 778-785.
  • 7刘红超,李兴源,郝巍,雷宪章.交直流互联电力系统非线性模态分析[J].电力系统自动化,2006,30(18):8-12. 被引量:7
  • 8GRUND C E, PASERBA J J, HAUER .l F, et al. Comparison of Prony and eigenanalysis for power system control design. IEEE Trans on Power Systems, 1993, 8(3): 964-971.
  • 9RUIZ VEGA D, MESSINA A R, ENRIQUEZ-HARPER G. Analysis of inter-area oscillations via non-linear time series analysis techniques//Proeeedings of 15th Power Systems Computation Conference, August 22-26, 2005, Liege, Belgium.
  • 10张鹏飞,薛禹胜,张启平.电力系统时变振荡特性的小波脊分析[J].电力系统自动化,2004,28(16):32-35. 被引量:74

二级参考文献26

  • 1Arrowsmith D. K, Place C M. An Introduction to Dynamic Systems. Cambridge: Cambridge University Press, 1990.
  • 2Lin C M, Vittal V, Kliemann W, et al. Investigation of Modal Interaction and Its Effects on Control Performance in Stressed Power Systems Using Normal Forms of Vector Fields. IEEE Trans on Power Systems, 1996,11(2):781-787.
  • 3Starrett S K, Fouad A A. Nonlinear Measures of Mode-machine Participation. IEEE Trans on Power Systems, 1998, 13(2): 389-394.
  • 4Thapar J, Vittal V, Kliemann W, et al. Application of the Normal Form of Vector Fields To Predict Interarea Separation in Power Systems. IEEE Trans on Power Systems, 1997, 12(2):844-850.
  • 5Zhu Songzhe, Vittal V, Kliemann W. Analyzing Dynamic Performance of Power Systems over Parameter Space Using Normal Forms of Vector Fields. IEEE Trans on Power Systems,2001,16(3) : 444-450.
  • 6Grund CE, Paserba J J, Hauer JF, et al. Comparison of Prony and Eigenanalysis for Power System Control Design. IEEE Trans on Power Systems, 1993, 8(3): 964-971
  • 7O'Shea P. The Use of Sliding Spectral Windows for Parameter Estimation in Power System Disturbance Monitoring. IEEE Trans on Power Systems, 2000, 15(4): 1261-1267
  • 8Delprat N, Escudie B, Guillemain P, et al. Asymptotic Wavelet and Gabor Analysis: Extraction of Instantaneous Frequencies.IEEE Trans on Information Theory, 1992, 38(2): 644-664
  • 9Cohen L. Time-frequency Analysis. Englewood Cliffs (NJ): Prentice Hall, 1995
  • 10薛禹胜(XueYusheng).运动稳定性量化理论--非自治非线性多刚体系统的稳定性分析(Quantitative Study of General Motion Stability and an Example on[M].南京:江苏科技出版社,..

共引文献116

同被引文献290

引证文献22

二级引证文献216

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部