期刊文献+

集装箱船全航线预配优化模型与算法研究 被引量:6

Optimum model and algorithm of containership′s pre-stowage planning in full routes
下载PDF
导出
摘要 集装箱船全航线配载问题属于NP-hard问题.为降低问题求解难度,提出了解决全航线配载问题的分解算法,即将配载问题分解为Bay位选择和Bay位中集装箱排序两个子问题.将Bay位选择看成是"装箱问题",以不同属性集装箱作为待装"物品",以船舶上的Bay位为箱子,以最优装箱(即使用箱子的数量最少)及集装箱在每个港口的倒箱数量最少为目标进行总布置配载;Bay位中集装箱排序是将Bay位选择阶段分配到不同Bay位的集装箱按某些规则进行排序,确定其在Bay位中的具体箱位.主要研究了Bay位选择阶段的模型及算法.实例模拟结果表明该方法可行,为集装箱船全航线配载优化提供了一个实用的模型. Containership stowage plan problem is an NP-hard problem. The problem is decomposed into two sub-problems, namely, pre-stowage plan and arranging containers of bays in order to reduce the computational complexity. Firstly, pre-stowage problem is regarded as packing problem, ship-bays on the board of vessel are regarded as bins, and the number of cells at each bay is taken as capacities of bins, containers with different characteristics (homogeneous containers group) are treated as items packed. At this stage, there are two objective functions: one is minimizing the number of bays packed by containers and the other is minimizing the number of rehandles. Secondly, containers assigned to each bays at first stage are allocated to special slot, and the objective functions are to minimize the metacentric height, heel and rehandles. The taboo search heuristics algorithm is used to solve the sub-problem. The main focus is on the first sub-problem. A practical case certifies the feasibility of the model and the algorithm.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第5期673-678,共6页 Journal of Dalian University of Technology
基金 辽宁省教育厅高等学校科研计划基金资助项目(05L091)
关键词 集装箱船 预配 装箱算法 二叉搜索树 全航线 containership pre-stowage bin packing problem binary search tree full routes
  • 相关文献

参考文献10

  • 1AVRIEL M, PENN M, SHPIRER N, et al. Stowage planning for container ships to reduce the number of shifts [J]. Annals of Operations Research, 1998, 76:55-71.
  • 2WILSON I, ROACH P. Principles combinatorial optimization applied to container-ship stowage planning [J]. Journal of Heuristics, 1999(5) :403-418.
  • 3AVRIEL M, PENN M, SHPIRER N. Container ship stowage problem: complexity and connection to the coloring of circle graphs [J]. Discrete Applied Mathematics, 2000, 103:271-279.
  • 4AVRIEL M, PENN M. Exact and approximate solutions of the container ship stowage problem [J]. Computers mad Industry Engineering, 1993, 25 (1-4) :271-274.
  • 5谢金星,邢文训.现代优化算法[M].北京:清华大学出版社,2000.
  • 6张维英.集装箱船全航线配载智能优化研究[D].大连:大连理工大学,2006.
  • 7邢文训,陈锋.超尺寸物品装箱问题及其算法[J].应用数学学报,2002,25(1):8-14. 被引量:4
  • 8XING Wen-xun. A bin packing problem with over-sized items [J]. Operations Research Letters, 2000, 30:83-88.
  • 9SARTAJ S. Data Structures, Algorithms, and Applications in C++ [M]. Beijing.. China Machine Press, 1999.
  • 10AKIO I, KAZUYA S, ETSUKO N, et al. Multi objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks [J]. European Journal of Operational Research, 2006, 171(2) :373-389.

二级参考文献4

  • 1[1]Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Complete-ness. San Francisco: Freeman, 1979
  • 2[2]Friesen D K, Langston M A. Variable Sized Bin Packing. SIAM J. Comput., 1986, 15:222-230
  • 3[3]Csirik J. An On-Line Algorithm for Variable-Sized Bin Packing. Acta Informatica, 1989, 26:697-709
  • 4[4]Murgolo F D. An Efficient Approximation Scheme for Variable-Sized Bin Packing. SIAM J. Comput,,1987, 16:149-161

共引文献5

同被引文献54

  • 1杨华龙,刘迪,夏秋.集装箱班轮多港挂靠循环航次舱位分配[J].重庆交通大学学报(自然科学版),2012,31(6):1248-1251. 被引量:4
  • 2王雁凤,黄有方.考虑碳排放的港口群混合轴辐式运输网络优化[J].北京理工大学学报(社会科学版),2014,16(5):42-50. 被引量:9
  • 3段成华,郭旭.基于整数规划的单贝多港(SBMP)配载模型研究[J].计算机辅助工程,2004,13(3):9-13. 被引量:4
  • 4ZHANG Wei-ying,LIN Yan,JI Zhuo-shang.Model and algorithm for container ship stowage planning based on bin-packing problem[J].Journal of Marine Science and Application,2005,4(3):30-36. 被引量:4
  • 5AVRIEL M, PENN M, SHPIRER N, etal. Stowage planning for container ships to reduce the number of shifts [J]. Annals of Operations Research, 1998, 76:55-71.
  • 6WILSON I, ROACH P. Principles combinatorial optimization applied to container ship stowage planning [J]. Journal of Heuristics, 1999(5) :403-418.
  • 7AVRIEL M, ship stowage the coloring Mathematics, PENN M, SHPIRER N. Container problem: complexity and connection to of circle graphs [J], Discrete Applied 2000, 103:271-279.
  • 8AVRIEL M, PENN M. Exact and approximate solutions of the container ship stowage problem [J]. Computers and Industrial Engineering, 1993, 25 (1- 4) :271-274.
  • 9BOTTER R C, BRINATI M A. Stowage container planning: a model for getting an optimal solution [M]// Computer Applications in the Automation of Shipyard Operation and Ship Design, IFIP Transactions B (Applications in Tech. ). Amsterdam: North-Holland, 1992 : Z17-229.
  • 10AMBROSINO D, SCIOMACHEN A, TANFANI E. Stowing a containership: the master bay plan problem [J].Transportation Research, Part A, 2004, 38: 81- 99.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部