期刊文献+

一种适合于分布式并行计算改进的平方共轭残差法 被引量:1

An Improved Conjugate Residual Squared Algorithm Suitable for Distributed Parallel Computing
下载PDF
导出
摘要 基于CRS提出了一种适合于分布式并行环境改进的平方共轭残差方法——ICRS.通过算法重构,ICRS方法将CRS方法所需要的2个全局同步化点降低到了1个,没有数据相关性.理论分析和实验表明ICRS方法比CRS方法具有更好的并行性和可扩展性. Based on the CRS method, an ICRS method is designed for distributed parallel environments. The improved method reduces two global synchronization points to one by changing the computation sequence in the CRS method and all inner products per iteration are independent. Theoretical analysis and numerical experiments show that the ICRS method has better parallelism and scalability than the CRS method.
出处 《微电子学与计算机》 CSCD 北大核心 2008年第10期12-14,共3页 Microelectronics & Computer
基金 国家自然科学基金项目(10771030) 国家“九七三”计划项目(2008CB317110) 教育部科研重点项目(107098) 高校博士点科研基金项目(20070614001) 四川省应用基础研究项目(2008JY0052)
关键词 KRYLOV子空间方法 ICRS 分布式并行计算 Krylov subspace methods improved conjugate residual square(ICRS) distributed parallel computing
  • 相关文献

参考文献6

  • 1Saad Y, Iterative methods for spase linear systems[M]. Boston: PWS Publishing Company, 1996.
  • 2Freund R W, Nachtigal N M. QMR: a quasi-minimal residual method for non-Hermitian linear systems[J ]. Numerische Mathematik, 1991(60) : 315 - 339.
  • 3van der Vorst H A, Bi- CGSTAB. A fast and smoothly con-verging variant of bi - CG for the solution of nonsymmetric line-ar systems[J]. SIAM J. Sci. Stat. Comput., 1992(13) :631 - 644.
  • 4Sogabe T, Zhang S L. Extended conjugate residual methods for solving nonsymmetric linear systems[ C]//Numerical Linear Algebra and Optimization. Beijing: Science Press, 2003:88 - 99.
  • 5Tong-xiang Gu, Xian-yu Zuo, Li-tao Zhang, et al. An improved bi-conjugate residual algorithm suitable for distributed parallel computing [ J ]. Elsevier Science, 2007,2 (15) : 1243 - 1253.
  • 6Xing - ping Liu, Tong - xiang Gu, Xu - deng Hang, et al. A parallel version of QMRCGSTAB method for large linear systems in distributed parallel environments[J]. Applied Mathematics and Computation, 2006,2 (15) : 744 - 752.

同被引文献11

  • 1李晓梅,吴建平.Krylov子空间方法及其并行计算[J].计算机科学,2005,32(1):19-20. 被引量:20
  • 2刘杰,迟利华,胡庆丰,李晓梅.一种改进的适合并行计算的TFQMR算法[J].计算机研究与发展,2005,42(7):1235-1240. 被引量:3
  • 3刘杰,刘兴平,迟利华,胡庆丰.一种改进的适合并行计算的共轭剩余算法[J].计算机学报,2006,29(3):495-499. 被引量:5
  • 4Dazevedo E,Eijkhout V,Romaine C.Reducing communication costs in the conjugate gradient algorithm on distributed memory multiprocessors[J].University of Tennessee,Knoxville:LAPACK Working Note,1992,56:200-207.
  • 5Merurant G.Multitasking the conjugate gradient on the Cray X-MP/48[J].Parallel Computing,1987,5 (2):267-280.
  • 6Saad Y.Krylov subspace methods on supercomputers.SIAMJournal on Scientific and Statistical Computing,1989,10 (8):1200-1232.
  • 7Young D M,Jea K C.Generalized conjugate gradient acceleration of nonsymmetrizable iterative methods:Part Ⅱ[C] //the nonsymmetrizable case,CNA-163,Center for Numerical Analysis,Univ.of Texas.Austin,1980:809-910.
  • 8Yang L T,Brent R P.Quantitative performance analysis of the improved quasi-minimal residual method on massively distributed memory computers Advances in Engineering Software[J].2002,33(1):169-177.
  • 9Saad Y.Iterative Methods for Sparse Linear Systems[M].Boston:PWS Publishing Company,1996.
  • 10Saad Y.Iterative Methods for Sparse Linear Systems[M].Phila delphia,USA:Society for Industrial and Applied Mathematics,2003:143 200.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部