期刊文献+

多关系频繁项集的并行获取

Paralleled Acquisition of Multi-Relational Frequent Itemsets
下载PDF
导出
摘要 现有的多关系频繁项集的挖掘都是在单机系统环境下进行的,存在着一定的效率问题.由此提出了一种并行处理多个表之间关系的算法,将表进行两两合并,在每台单机上只需要处理两张表的结果,提高了挖掘效率,减少了挖掘时间. Now, most multi-relational frequent itemsets are found in a PC, following some efficient problems. In this paper, we proposed a method by which we can process data between many tables in relational database parallel. We only need deal with the result of the two tables in one PC by merging two tables, and we can enhance the efficiency and reduce the time in the process of the data mining.
出处 《微电子学与计算机》 CSCD 北大核心 2008年第10期94-96,共3页 Microelectronics & Computer
基金 国家自然科学基金项目(60575035 60673060)
关键词 多关系 频繁项集 多表 并行 multi-relation frequent iternsets several tables parallel
  • 相关文献

参考文献7

  • 1Dehaspe L, De Raedt L. Mining association rules in multiple relations[ C]//Proc. of the 7th Int'l Workshop on Inductive Logic Programming, LNAI 1297. Berlin: Springer - Verlag, 1997:125 - 132.
  • 2Dehape L. Frequent pattern discovery in first - order logic [D]. Belgium: Katholieke Universiteit Leuven, 1998.
  • 3Nijssen S, Kok J. Faster association rules for multiple relations[C]//Proc, of the 17th Int'l Joint Conf. on Artificial Intelligence (IJCAI 2001). USA: Washington, 2001 (2) : 891 - 896.
  • 4Jensen V C, Soparkar N. Frequent itemset counting across multiple tables[C]//Prec, of the 4th Pacific-Asia Conf. of Knowledge Discovery and Data Mining, Current Issues and New Applications, LNCS 1805. Berlin: Springer- Verlag, 2000:49 - 61.
  • 5Ng E K K, Fu A W, Wang K. Mining association rules from stars[C]//Prec, of the 2002 IEEE Int'l Conf. on Data Mining ( ICDM 2002). Los Alamitos: IEEE Computer Society, 2002: 322- 329.
  • 6Han jiawei, Micheline Kamber. Data minging concepts and techniques[ M]. San Francisco, CA: Morgan Kaufmann Pbulishers, 2000:225 - 227.
  • 7何军,刘红岩,杜小勇.挖掘多关系关联规则[J].软件学报,2007,18(11):2752-2765. 被引量:38

二级参考文献1

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部