摘要
探讨Cayley图连通圈成为Cayley图的一个充分条件.利用代数学中关于群扩展理论的基本知识证明了如果Carley图连通圈中的Cayley图是具有完全旋转的Cayley图时,则相应的Cayley图连通圈可表示为一个半直积群对应的Cayley图,并通过几个实例进行说明验证.
We discuss the structure of Cayley graph-connected cycle and attempt to find the sufficient condition for Cayley graph-connected cycle to be Cayley graph. We prove that if the bose Cayley graph has complete rotation, then the result graph i.e. Cayley graph-connected cycle is a Cayley graph of a corresponding semi-direct product group by the theory of group extension in algebra. Also, we give some examples including the famous network, cube- connected graph to explain our result.
出处
《微电子学与计算机》
CSCD
北大核心
2008年第10期137-139,共3页
Microelectronics & Computer
基金
广东省自然科学基金项目(05006349)