期刊文献+

Cayley图连通圈的一个代数性质研究

Study on an Algebraic Property of Cayley Graph-Connected Cycle
下载PDF
导出
摘要 探讨Cayley图连通圈成为Cayley图的一个充分条件.利用代数学中关于群扩展理论的基本知识证明了如果Carley图连通圈中的Cayley图是具有完全旋转的Cayley图时,则相应的Cayley图连通圈可表示为一个半直积群对应的Cayley图,并通过几个实例进行说明验证. We discuss the structure of Cayley graph-connected cycle and attempt to find the sufficient condition for Cayley graph-connected cycle to be Cayley graph. We prove that if the bose Cayley graph has complete rotation, then the result graph i.e. Cayley graph-connected cycle is a Cayley graph of a corresponding semi-direct product group by the theory of group extension in algebra. Also, we give some examples including the famous network, cube- connected graph to explain our result.
出处 《微电子学与计算机》 CSCD 北大核心 2008年第10期137-139,共3页 Microelectronics & Computer
基金 广东省自然科学基金项目(05006349)
关键词 Cayley图连通圈 完全旋转 半直积 CAYLEY图 Cayley graph-connected cycle complete rotation semidirect-product Cayley graph
  • 引文网络
  • 相关文献

参考文献6

  • 1Akers S B, Krishnamurthy B. A group- theoretic model for intereonnection networks [ J ]. IEEE Transactions on computers, 1989(38) : 555 - 565.
  • 2Lakshmivarahan S, Jung- sing Jwo, Dhall S K. Analysis of symmetry in interconnection networks based on cayley groups of permutation groups: a survey [J ]. Parallel Computing, 1977(19) :227- 232.
  • 3Draper R N. Surpertoroidal netwroks [ R ]. USA: Supercomputing Research Center, Technical Report SRC- TR - 90 - 005,1990.
  • 4Ohring S R, Sarkar F, Sajal K Das. Cayley graph-connected cycles: a new class of fixed- degree interconnection networks[C]//Proceedings of the 28th Hawaii Intemational Conference on System Sciences, HICSS'95. Denton: North Texas University, 1995:479 - 488.
  • 5Farhad Shahrokhi, Lazlo Szekely. A new approach to the uniform concurrent multicommodity flow problem: theory and applications[R]. Denton: University of North Texas, Technical Report CRPDC- 90 - 8,1990.
  • 6Marie- Claude Heydemann, Nausica Marlin, Stephane Prennes. Rotational cayley graphs on transposition generated groups[J ]. Electronic Notes in Discrete Mathematics, 2000(5) :177- 180.
;
使用帮助 返回顶部