期刊文献+

多目标优化的遗传算法及其实现 被引量:26

The Research and Implementation of Genetic Algorithm for Multi-Objective Optimization
下载PDF
导出
摘要 遗传算法是一种通过模拟自然进化过程搜索最优解的方法,在优化方法中具有独特的优越性,有着非常重要的理论意义和广泛的应用领域.多目标优化问题求解已成为遗传算法的一个重要研究方向,而基于Pareto最优概念的多目标遗传算法则是当前遗传算法的研究热点.本文对遗传算法的理论基础进行分析,包括模式定理等,讨论用遗传算法来解决多目标优化问题的方法并给出其实现,介绍遗传算法的各种改进措施,并指出遗传算法的发展动向. Genetic Algorithms (GAs) are stochastical search and optimization techniques which mimic the natural process of evolution. GAs have some advantages over the traditional optimization algorithms, and are of the great importance and have a wide range of applications. Multi - Objective Optimization (MOO) has been an important research area of Genetic Algorithms in recent years, and current research work focuses on the Pareto optimal - based MOO evolutionary approaches. The basic algorithm theory and implementation techniques of genetic algorithms are outlined. The implementation of Multi - Objective optimization problem has been given. This paper has also summed up some kinds of relevant improved methods and some new developmental trends concerning genetic algorithms.
作者 胡贵强
出处 《重庆文理学院学报(自然科学版)》 2008年第5期12-15,共4页 Journal of Chongqing University of Arts and Sciences
关键词 遗传算法 多目标优化 PARETO最优 Genetic Algorithms Multi - Objective Optimization Pareto optimal
  • 相关文献

参考文献9

二级参考文献69

  • 1沙鲁生,方红远,蔡守华,滕雅元.模拟技术与多目标决策在平原湖区水资源优化调度中的应用[J].农田水利与小水电,1995(12):12-17. 被引量:6
  • 2张良杰,毛志宏,李衍达.遗传算法中突变算子的数学分析及改进策略[J].电子科学学刊,1996,18(6):590-595. 被引量:26
  • 3Charnes A, Cooper W W. Management Models and Industrial Applications of Linear Programming, Volume 1. New York:John Wiley, 1961.
  • 4Ijiri Y. Management Goals and Accounting for Control. Amsterdan: North Holland, 1965.
  • 5Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design. Structural Optimization, 1992, 4 : 99 - 107.
  • 6Chen Y L, Liu C C. Multiobjective VAR planning using the goal-attainment method, IEE Proceedings on Generation,Transmission and Distribution, 1994,141 (3) :227 -232.
  • 7Coello C A C, Christiansen A D, Aguirre A H. Using a new GA- based multiobjective optimization technique for the design of robot arms. Robotica, 1998,16:401-414.
  • 8Fujita K, Hirokawa N, Akagi S, Kitamura S, Yokohata H.Multi-objective optimal design of automotive engine using genetic algorithm. In: Proceedings of DETC'98-ASME Design Engineering Technical Conferences, 1998.
  • 9Cvetkovic D, Parmee I C. Genetic algorithm-based multi-objective optimization and conceptual engineering design, Washington DC, 1999. 29-36.
  • 10Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms-a comparative case study. In: Eiben A E.Back T, Schoenauer M, Schwefel H P eds. Parallel Problem Solving from Nature, Berlin, Germany: Springer, 1998. 292-301.

共引文献287

同被引文献196

引证文献26

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部