期刊文献+

渗透系数的条件模拟对污染物运移的不确定性分析 被引量:7

Uncertainty analysis of the contaminant transport fate using conditional simulation of hydraulic conductivity
下载PDF
导出
摘要 应用基于顺序条件模拟的蒙特卡罗方法,分析不同的先验渗透系数对污染物运移的不确定性影响.研究结果证明渗透系数的条件模拟可大大降低污染物运移结果的不确定性;随着渗透系数条件点数的变化,通过模拟得到的含水层中污染羽的空间矩(一阶矩和二阶矩)变化并不明显,各点的污染物浓度均值变化也不大.而污染物浓度变化的最大方差(不确定性)则随着渗透系数条件点数的增加而减小,同时运移结果的不确定性还取决于渗透系数条件点在空间上的分布位置.最后,根据渗透系数不同的条件模拟对污染物运移结果的响应,对实际工作中选取条件点的多寡提出相应的建议. On the assumption that the hydraulic conductivity field follows a lognormal distribution, the sequential Gaussian simulation (SGS), a commonly used conditional simulation method, is introduced to generate multiple realizations of the hydraulic conductivity field. Then Monte Carlo method, combined with the SGS method, is applied to investigate the effect of the conditional fields of hydraulic conductivity on the uncertainty regarding the contaminant transport fate. For the contaminant plume examined in the synthetic example in this paper the application of conditional simulation to generating hydraulic conductivity field leads to dramatic uncertainty reduction of the result output from the transport model, compared with those results based on unconditional simulations. It is found that the change of the averaged plume in terms of both spatial moments and concentrations output from the transport model is insensitive to the number of the conditioning data of hydraulic conductivity, whereas the peak variance of the plume concentrations at node decreases with the addition of the conditional hydraulic conductivity data. Moreover, the uncertainty of the modeled plume is dominated by the spatial distribution of the certain conditional hydraulic conductivity data. Additional suggestion is made that optimization techniques be used to ascertain the number of the conditional hydraulic conductivity data at the field site.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期280-288,共9页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(40472130,40725010)
关键词 渗透系数 条件模拟 空间变异性 运移模型 不确定性 hydraulic conductivity, conditional simulation, spatial variation/variability, transport model, uncertainty
  • 相关文献

参考文献22

  • 1吴吉春,薛禹群,黄海,张政治,王玉海.山西柳林泉裂隙发育区溶质运移三维数值模拟[J].南京大学学报(自然科学版),2000,36(6):728-734. 被引量:15
  • 2Freeze R A A stochastic conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media.Water Resources Research,1975,11(5):725-741.
  • 3Gelhar L W.Stochastic subsurface hydrology from theory to applications.Water Resources Research,1986,22(9):135s-145s.
  • 4Koltermann C E,Gorelick S M.Heterogeneity in sedimentary deposits:A review of structure-imitating,process-imitating,and descriptive approaches.Water Resources Research,1996,32(9):2617-2658.
  • 5黄冠华,谢永华.非饱和水分运动参数空间变异与最优估值研究[J].水科学进展,1999,10(2):101-106. 被引量:22
  • 6Smith J L.Spatial variability of flow parameters in stratified sand.Mathematical Geology,1981,13(1):1-21.
  • 7Woodbury A D,Sudicky E A.The Geostatistical characteristics of the Borden aquifer.Water Resources Research,1991,27(4):533-546.
  • 8施小清,吴吉春,袁永生.渗透系数空间变异性研究[J].水科学进展,2005,16(2):210-215. 被引量:60
  • 9阎婷婷,吴剑锋.渗透系数的空间变异性对污染物运移的影响研究[J].水科学进展,2006,17(1):29-36. 被引量:34
  • 10Kunstmann H,Kinzelbach W.Computation of stochastic wellhead protection zones by combining the first-order second-moment method and Kolmogorov backward equation analysis.Journal of Hydrology,2000,237:127-146.

二级参考文献55

  • 1薛禹群,吴吉春,谢春红.越流含水层系统地下水污染数值模拟[J].地质学报,1997,71(2):186-192. 被引量:15
  • 2雷志栋 杨诗秀.土壤特性空间变异性的初步研究[J].水利学报,1985,9:10-19.
  • 3韩金焱 孙小彦 等.矿床条件模拟在矿山生产中的应用.中国数学地质[M].北京:地质出版社,1995.163-171.
  • 4Dettinger M D, Wilson J L, First order analysis of uncertainty in numerieal models of groundwater flow, Part 1: Mathematical development [J],Water Resources Research, 1981, 17(1):149-161.
  • 5Meyer P D, Eheart J W, Ranjithan S, et al. Design of Groundwater monitoring networks for landfills[A]. In: Kundzewiez Z Weds. Proceedings of the International Workshop on New Uncertainty Concepts in Hydrology and Water Resot, rces[C]. Cambrklge University Press, 1995,190-196.
  • 6Tiedcman C, Gorelick S M. Analysis of uncertainty in optimal groundwater contaminant capture design[J]. Water Resources Research, 1993,29(7): 2 139-2 154.
  • 7Freeze R A. A stochastic conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media[J]. Water Resources Research, 1975, 11(5):725-741.
  • 8Gelhar L W. Stochastic subsurface hydrology from theory to applications[J]. Water Resources Research, 1986, 22(9): 135-145.
  • 9Anderson M P. Characterization of geological heterogeneity[A]. In Dagan G and Neuman S P eds. Subsurface Flow and Transport: A Stochastic Approach[C]. Cambridge University Press, UK, 1997, 23-43.
  • 10Drazer G, Koplik J. Tracer dispersion in two-dimensional rough fractures[J]. Physical Review E, 2001, 63(5), Art. No.056104.doi: 10.1103/phys Re E. 63. 056104.

共引文献167

同被引文献93

引证文献7

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部