期刊文献+

一种新型溶液再生装置理论性能研究——太阳能空气预处理溶液集热/再生装置 被引量:10

THE STUDY ON THEORETICAL PERFORMANCE OF A SORT OF NEW TYPE LIQUID REGENERATION EQUIPMENT
下载PDF
导出
摘要 提出一种适合我国南方夏季高湿天气的新型溶液再生装置——太阳能空气预处理集热/再生装置,它能使溶液除湿冷却空凋系统的溶液在较低温度下实现再生。理论研究发现新型溶液再生器内空气和盐分存在一个匹配流量比ASMR^*及与之相对应的最大理论蓄能密度SCmax。理论计算发现在Tz=60℃、Cdil.sol=0.3条件下,当Yin由29g/kg下降到14g/kg时,匹配流量比ASMR^*值稳定在26~27范围内,而最大蓄能密度阳SCmax。增大了50%。在定义有效溶液比(ESP)和有效蓄能密度(ESC)两个概念的基础上,理论计算得出当ESP由100%下降到67%时,ESC不降反升;溶液出口浓度Cstr.sol由0.4升高到0.49,相对于浓度为0.3的稀溶液浓度升幅达90%。这些都充分说明了空气预处理再生装置具有极大提高溶液除湿冷却空调系统性能的潜力。 A new liquid regeneration equipment -- solar air pretreatment collector/regenerator, which fits high humidity climate in summer in Chinese south was put forward. The equipment can achieve liquid regeneration in lower temperature for liquid desiccant cooling system. Theoretical study found that there are a match air to salt mass ratio ASMR^* and the largest theoretical storage capacity SCmax. At Tz = 60℃ and Xin = 2.33kg/kg, theoretical calculation discovered when Ym drops from 29g/kg to 14g/kg, the SCmax, increase 50% compared with ASMR^* value round 26 - 27. After defining effective solution percent (EPS) and effective storage capacity (ESC) concepts, theoretical calculation found when ESP drops from 100% to 67%, ESC raises opposite to fall; liquid outlet concentration Catr.sol increases from 0.4 to 0.49 the extent totaling to 90% opposite to the diluted solution concentration of 0.3. All these data explain fully that air pretreatment liquid regeneration equipment enable to improve the performance of liquid desiccant cooling system.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2008年第9期1078-1085,共8页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(NO.50376052) 2007年度教育部科学技术研究重大项目(307013) 江苏省普通高校研究生科研创新计划(CX07B_095z)
关键词 溶液再生 空气预处理 有效溶液比 liquid regeneration air pretreatment effective solution proportion
  • 相关文献

参考文献9

  • 1Yin Yonggao, Zhang Xiaosong, Chen Zhenqian. Experimental study on dehumidifier and regenerator of liquid desiccantcooling air conditioning system [ J ]. Building and Environment, 2007, 42: 2505--2511.
  • 2Gandhidasan P. Quick performance prediction of liquid desiccant regeneration in a packed bed[J]. Solar Energy, 2005, 79(1) :47--55.
  • 3施明恒,杜斌,赵云.太阳能液体除湿空调系统再生和蓄能特性的研究[J].太阳能学报,2006,27(1):49-54. 被引量:20
  • 4Grossman Gershon. Solar-powered systems for cooling, dehumiditlcation and air-conditioning[J]. Solar Energy, 2002, 72 ( 1 ) : 53--62.
  • 5Kessling W, Laevemann E, Kapefhammer C. Energy storage for desiccant cooling systems component development[ J]. Solar Energy, 1998, 64 (4-6) :209--221.
  • 6Alizadeh S, Saman W Y. An experimental study of a forced flow solar collector/regenerator using liquid desiccant[J]. Solar Energy, 2002, 73(5): 345--362.
  • 7Fumo Nelson, Goswami D Y. Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration[J]. Solar Energy, 2002,72(4): 351--361.
  • 8Kessling W, Laevemann E, Peltzer M. Energy storage in open cycle liquid desiccant cooling systems[ J]. International Journal of Refrigeration, 1998, 21(2) : 150--156.
  • 9Conde Manuel R. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design[ J]. International Journal of Thermal Sciences, 2004, 43:367--382.

二级参考文献5

  • 1Kesslling W, Laevemann E, Kapfhammer C. Energy storage for desiccant cooling systems component development[J]. Solar Energy,1998, 64:209--221.
  • 2Lof G O G. Cooling with solar energy[A]. Proc of the World Symposium on Applied Solar Energy[ C], 1955, November 1- 5:171-189.
  • 3Ertas A, Anderson E E, Kiris I. Properties of a new liquid desiccant solution-lithium chloride and calcium-chloride mixture[J]. Solar Energy, 1992, 49(3) : 205--212.
  • 4Kakabaev A, Khandurdyev A. Absorption solar refrigeration unit with open regeneration of solution [J]. Geliotekhnika,1969,5(4) : 28-32.
  • 5蔡辉,施明恒.太阳能制冷技术的发展概况[J].科技与经济,2003,16(2):58-60. 被引量:21

共引文献19

同被引文献89

引证文献10

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部