期刊文献+

二氧化钛光解与滑动弧等离子联合降解偶氮染料研究 被引量:5

DEGRADATION OF ACID ORANGEⅡSOLUTION BY GAS-LIQUID PHASE GLIDING ARC DISCHARGE WITH TiO_2 PHOTOCATALYSIS
下载PDF
导出
摘要 采用气液两相滑动弧等离子和二氧化钛光降解技术联合处理酸性橙Ⅱ,研究了二氧化钛浓度、气体类型和溶液初始pH值对酸性橙Ⅱ降解率的影响。结果表明:在电压为10kV,频率为50Hz,电极间最窄距离处为3.5mm条件下,对于浓度是300mg/L的酸性橙Ⅱ溶液,二氧化钛浓度为1.0g/L,初始pH值为酸性或碱性,载体为氧气,协同效应明显,更有利于酸性橙Ⅱ降解率的提高。同时检测了纯水放电条件下,二氧化钛的加入对活性粒子H_O_2、O_3和OH·生成量的影响,酸性橙Ⅱ降解率的提高是更多活性粒子作用的结果。用红外光谱和GC-MS对降解产物测试分析,推测酸性橙Ⅱ的可能降解途径,即羟基自由基攻击酸性橙Ⅱ分子上的C-N键,导致C-N键的断裂,染料脱色矿化降解。 The influences of mass concentration of TiO2, carrier gas source and the initial pH value on the degradation efficiency of Acid Orange Ⅱ in the combined application of gas-liquid gliding arc discharge with TiO2 photocatalysis were studied. Experimental results showed that in the fixed applied voltage ( 10 kV), power frequency (50Hz) and the shortest electrode distance (3.5mm) condition, the optimum degradation rate for 500mg·L^-1 Acid Orange Ⅱ solution could be achieved at the TiO2 concentration of 1.0 g·L^-1 with using oxygen as the carrier gas, and the initial pH value was acidic or basic. The effect of TiO2 concentration on the production of H2O2, O3 and OH· active species was also investigated. The enhancement of Acid Orange Ⅱ degradation rate could be mainly attributed to the increasing amount of the active species. Finally, The possible degradation channel of Acid Orange Ⅱ was proposed through the analysis of the main in- termediates detected by gas chromatograph coupled with mass spectrophotometer (GC-MS) and fourier transform infrared spectroscopy(FTIR) techniques. We concluded that the hydroxyl radicals could react with the azo linkage-bearing carbon of a hydroxy, which led to the cleavage of C-N and the discoloration of azo-dye.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2008年第9期1124-1130,共7页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(50476058)
关键词 滑动弧等离子 二氧化钛 酸性橙Ⅱ 降解率 gliding arc discharge TiO2 Acid Orange Ⅱ degradation efficiency
  • 相关文献

参考文献16

  • 1Czenichovski A. Gliding arc applications to engineering and environment control[J]. Pure and Appl Chemistry, 1994, 66 (6) : 1301--1310.
  • 2Yan Jianhua, Du Changming, Li Xiaodong, et al. Plasma chemical degradation of phenol in solution by gas-liquid gliding arc discharge [ J ]. Plasma Sources Sci and Technol, 2005, 14: 637--644.
  • 3Benstaali B, Boubert P, Cheran B G. Density and rotational temperature measurements of the OH and NO radicals produced by a gliding arc in humid air [J]. Plasma Chem and Plasma Process, 2002, 22(4): 553--571.
  • 4Lukes P, Clupek M, Lupek P, et al. Degradation of phenol by underwater pulsed corona discharge in combination with TiO2 photocatalysis[ J]. Res Chem Interned , 2005, 31 (5) : 285--294.
  • 5Hao Xiaolong, Zhou Minghua, Zhang Yi, et al. Enhanced degradation of organic pollutant 4-chlorophenol in water by non-thermal plasma process with TiO2 [ J ]. Plasma Chem Plasma Process, 2006, 26: 455--468.
  • 6毛立群,杨建军,郭泉辉,李庆霖,张治军.活性艳红X-3B水溶液的光化学与光催化协同脱色反应[J].催化学报,2001,22(2):181-184. 被引量:41
  • 7柏双鹏,崔鹏.光催化氧化法降解水溶性染料罗丹明B的研究[J].当代化工,2004,33(4):227-230. 被引量:8
  • 8Joshi A A, locke B R, Arce P, et al. Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulse corona discharge in aqueous solution [ J ]. J Hazard Mater, 1995, 41: 3--30.
  • 9Moras F, Abdelmalek F. Oxidation of organic solutes in aqueous medium by a gliding arc discharge in an oxygen containing gas[ A]. Proc 14th Int Syrup, On Plasma Chemistry[ C], Prague, Czech Republic, 1999, 2709---2714.
  • 10卞文娟.高压脉冲液相放电技术处理水中难降解有机污染物的研究[D].杭州:浙江大学,2004.

二级参考文献48

  • 1[1]Matthews R W. Photocatalytic oxidation of organic contaminants in water: an aid to environmental preservation[J ]. Pure and Apple. Chem., 1992, 64(6): 1285- 1290
  • 2[2]Goswami D Y. A Review of Engineering Developments ofAqueous Phase Solar Photocatalytic Detoxification and Infection Process, J: Solar Energy Engineering [J ], 1997, 119(3): 101- 107
  • 3国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境出版社,2002..
  • 4Hoffmann M R, Martin S T, Choi W, et al. Environmental Application of semiconductor photocatalysis[J]. Chem Rev, 1995, 95: 69-96.
  • 5Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis [ J ]. J Photochem Photobiol C: Photochem Rev, 2000, 1 : 1-21.
  • 6Vinodgopal K, Wynkoop D E, Kamat P V. Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7,on TiO2 particles using visible light [ J ]. Environ Sci Technol, 1996, 30: 1660-1666.
  • 7Zhang F, Zhao J, Zhang L, et al. Photoassisted degradation of dye pollutants in aqueous TiO2 dispersions under irradiation by visible light [ J ]. J Mol Catal A:Chem, 1997, 120: 173-178.
  • 8Wu T, Liu G,Zhao J, et al. Photoassisted degradation of dye polhaams. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irmdiallon in aqueous TiO2[J].J Phys Chem B. 1998. 102: 5845-5851.
  • 9Wu F, Deng N, Hua H. Degradation mechanism of azo dye C. I. reactive red 2 by iron powder reduction and photooxidation in aqueous solutions [ J ]. Chemosphere, 2000, 41: 1233-1238.
  • 10Zhu C, Wang L, Kong L, et al. Photocatalytic degradation of azo dyes by supported TiO2 + UV in aqueous solution [J]. Chemosphere, 2000, 41: 303-309.

共引文献68

同被引文献45

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部