期刊文献+

Min-max partitioning problem with matroid constraint

Min-max partitioning problem with matroid constraint
下载PDF
导出
摘要 In this paper, we consider the set partitioning problem with matroid constraint, which is a generation of the k-partitioning problem. The objective is to minimize the weight of the heaviest subset. We present an approximation algorithm, which consists of two sub-algorithms-the modified Edmonds' matroid partitioning algorithm and the exchange algorithm, for the problem. An estimation of the worst ratio for the algorithm is given. In this paper, we consider the set partitioning problem with matroid constraint, which is a generation of the k-partitioning problem. The objective is to minimize the weight of the heaviest subset. We present an approximation algorithm, which consists of two sub-algorithms--the modified Edmonds' matroid partitioning algorithm and the exchange algorithm, for the problem. An estimation of the worst ratio for the algorithm is given.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1446-1450,共5页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project (No. 10671177) supported by the National Natural Science Foundation of China
关键词 MATROID Matroid partition Worst ratio 拟阵 划分方式 最差比 组合规划
  • 相关文献

参考文献12

  • 1Luitpold Babel,Hans Kellerer,Vladimir Kotov.Thek-partitioning problem[J].Mathematical Methods of Operations Research.1998(1)
  • 2F. K. Hwang.Optimal partitions[J].Journal of Optimization Theory and Applications.1981(1)
  • 3Garey, M.R,Johnson, D.S.Computers and Intractabil-ity: A Guide to the Theory of NP-completeness[]..1978
  • 4Lawler,E.L.Combinatorial Optimization: Networks and Matroids[]..1976
  • 5Welsh,D.J.A.Matroid Theory[]..1976
  • 6Babel L,Kellerer H,Kotov V.The k-partitioning problem[].Mathematical Methods of Operations Research.1998
  • 7BURKARD R E,YAO E Y.Constrained partitioning problems[].Discrete Applied Mathematics.1990
  • 8J. Edmonds.Minimum Partition of a Matroid into independent Subsets[].Journal of Research ofthe National Bureau of Standards.1965
  • 9Graham,R.L.Bounds on Multiprocessing Timing Anomalies[].SIAM Journal on Applied Mathematics.1969
  • 10HWANG F K.Optimal partitions[].Journal of Optimization Theory and Applications.1981

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部