期刊文献+

有限群上单Yetter-Drinfeld模的结构 被引量:1

The structures of Yetter-Drinfeld simple modules over finite groups
下载PDF
导出
摘要 给定一个有限群G,对群代数kG上的Yetter-Drinfeld单模的结构和分类进行探讨.通过群G的共轭类代表元的中心化子子群上的模构造Yetter-Drinfeld kG-模,并由此给出全部单Yetter-Drinfeld kG-模的结构和同构分类. Given a finite group G, the structures and classification of Yetter-Drinfeld simple modules over kG are investigated in this paper. It constructs Yetter-Drinfeld kG-modules from modules over the centralizer subgroups of representatives of congrugent classes of G. Then describes the structures of simple Yetter-Drinfeld kG-modules and classifies them up to isomorphism.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2008年第3期6-8,22,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10771183)
关键词 有限群 单模 同构 finite group simple module isomorphism
  • 相关文献

参考文献10

  • 1DRINFELD V G. Quantum groups [C]// Proc Int Cong Math. Providence, RI.. Amer Math Soc, 1987: 798- 820.
  • 2MAJID S. Foundations of quantum group theory [M]. Cambridge: Cambridge University Press, 1995.
  • 3MONTGOMERY S. Hopf algebras and their actions on rings [M]// CBMS Regional Conference Series in Mathematics 82. Providence, RI: Amer Math Soc, 1993.
  • 4KASSEL C. Quantum group [M]. New York: Springer-Verlag, 19fi5.
  • 5YETTER D N. Quantum groups and representations of monoidal categories [J]. Math Proc Cambridge Phil Soc, 1990, 108: 261-290.
  • 6MAJID S. Doubles of quasitriangular Hopf algebras [J]. Comm Algebra, 1991, 19: 3061-3073.
  • 7MASON G. The quantum double of a finite group and its role in conformal field theory [C]//CAMPBELL C M. Proceedings, London Mathematical Society Conference, Galway, 1993. Group'93/St Andrews Ⅱ. London Math Soc Lecture Notes Series 212. Cambridge: Cambridge Univ Press, 1995: 405-417.
  • 8WITHERSPOON S J. The representation ring of the quantum double of a finite group [J]. J Algebra, 1996, 179:305-329.
  • 9RADFORD D E. On oriented quantum algebras derived from representations of the quantum double of a finte- dimensional Hopf algebra [J]. J Algebra, 2003, 270: 670-695.
  • 10RADFORD D E, TOWBER J. Yetter-Drinfeld categories associated to an arbitrary bialgebra [J]. J Pure Appl Algebra, 1993, 87: 259-279.

同被引文献9

  • 1张云,王志华.量子群正部分的二维表示[J].扬州大学学报(自然科学版),2006,9(3):13-15. 被引量:3
  • 2DRINFELD V G. Quantum groups[C]//Proc Int Cong Math. Providence, RI: Amer Math Soe, 1987; 798- 820.
  • 3CHEN Hui-xiang. Irreducible representations of a class of quantum doubles[J].J Algebra, 2000, 225: 391-409.
  • 4CHEN Hui-xiang. Finite dimensional representations of a quantum double [J]. J Algebra, 2002, 251: 751-789.
  • 5WITHERSPOON S J. The representation ring of quantum double of a finite group[J].J Algebra, 1996, 17: 305-329.
  • 6MAJID S. Doubles of quasitriangutar Hopf algebras [J]. Comm Algebra, 1991, 19:3061-3073.
  • 7KASSEL C. Quantum groups [M]. New York: Springer-Verlag, 1995: 220-223.
  • 8HIGMAN D. Indecomposable modules at characteristic p[J]. Duke Math J, 1954, 21: 377-381.
  • 9JANUSZ G J. Indecomposable modules of groups with a cyclic Sylow subgroup [J]. Trans Amer Math Soc, 1966, 125(2):288-295.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部