期刊文献+

具有未知死区和增益符号的自适应神经网络控制

Adaptive neural network control with unknown dead-zone and gain sign
下载PDF
导出
摘要 针对一类具有未知死区和未知控制增益符号的单输入单输出非线性系统,根据滑模控制原理,并利用Nussbaum函数的性质,提出两种自适应神经网络控制器的设计方案.通过引入示性函数,提出一种简化死区模型,取消了死区模型的倾斜度相等的条件.通过引入逼近误差的自适应补偿项来消除建模误差和参数估计误差的影响.理论分析证明闭环系统是半全局一致终结有界.仿真结果表明该方法的有效性. The problem of adaptive neural network control for a class of single input single output (SISO) nonlinear systems with unknown dead-zone and function control gain sign is studied in this paper. Based on the principle of sliding mode control and the property of Nussbaum function, two design schemes of adaptive neural network controller are proposed. By introducing characteristic function for the dead-zone model in the systems, a simplified dead-zone model is developed. The approach removes the condition of the equal slope with defined region. The adaptive compensation term of the approximation error is adopted to minify the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. Simulation results demonstrate the effectiveness of the approach.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2008年第3期17-22,共6页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(60774017 60874045) 江苏省高校自然科学基金资助项目(07KJB520133)
关键词 死区 神经网络控制 自适应控制 滑模控制 NUSSBAUM函数 dead-zone neural network control adaptive control sliding mode control Nussbaum function
  • 相关文献

参考文献15

  • 1TAO G, KOKOTOVIC P V. Adaptive sliding control of plants with unknown dead-zone [J]. IEEE Trans on Autom Contr, 1994,39(1): 59-68.
  • 2TAO G, KOKOTOVIC P V. Discrete-time adaptive control of systems with unknown dead-zone[J]. Int J of
  • 3CHO H Y, BAI E W. Convergence results for an adaptive dead zone inverse [J]. Int J of Adap Contr & Signal Process, 1998, 12(3): 451-466.
  • 4WANG X S, HONG H, SU C Y. Model reference adaptive control Of continuous time systems with an unknown dead-zone [J]. IEE Proc-Control Theory ~y. Appl, 2003, 150(3): 261-266.
  • 5WANG X S, HONG H, SU C Y. Robust adaptive control a class of nonlinear systems with an unknown dead-zone [J]. Automatica, 2004, 40(3): 407-413.
  • 6ZHANG T, GE S Z, HANG C C. Stable adaptive control for a class of nonlinear systems using a modified Lyapunov function [J]. IEEE Trans on Autom Contr, 2000, 45(1): 129-132.
  • 7ZHANG T, GE S Z, HANG C C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design [J]. Automatica, 2000, 36(12): 1835-1846.
  • 8NUSSBAUM R D. Some remarks on the conjecture in parameter adaptive control [J]. Syst Contr Lett, 1983,1(3):243-246.
  • 9ZHANG Tian-ping, ZHANG Hui-yan, GU Hai-jun, et al. Direct adaptive neural control of nonlinear systems with unknown gain sign [C]// Proceedings of the Third International Conference on Machine Learning and Cybernetics. Shanghai: IEEE Inc, 2004: 851-855.
  • 10GE Shu-zhi, WANG Jing. Robustness adaptive neural control for a class of perturbed strict feedback nonlinear systems [J]. IEEE Trans on Neural Network, 2002, 13(6) : 1409-1412.

二级参考文献11

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部