摘要
提出一种新的复杂性度量,其特点是:第一,强调对系统演化瞬态复杂性描述的重要性,并且建议用系统对微扰反应的丰富程度来刻画瞬态复杂性;第二,基于目前的知识,建议把系统演化的终态分为6种(稳定平衡态、稳定周期态、稳定准周期态、随机态、混沌态、复杂态),并且用周期运动"等效"地对这6种终态进行描述,以刻画它们的复杂性.
A new measure of complexity is proposed. Its characteristics are: ①the importance of the description on the transient complexity of the system evolution is emphasized, and the transient complexity is depicted by the reaction abundance to the perturbation; ②it is suggested that, based on the current understanding, the system evolution final states can be divided into six kinds (the stable equilibrium, the stable periodic, the stable quasi-periodic, the random, the chaotic, and the complex), and the complexity of the final states can be "eouivalentlv" describe by periodic motions.
出处
《扬州大学学报(自然科学版)》
CAS
CSCD
2008年第3期23-26,共4页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金重点资助项目(10635040)
国家自然科学基金面上资助项目(70671089)
关键词
复杂性
演化瞬态
周期运动
complexity
evolution transience
periodic motion