摘要
针对目前web2.0下网页无法进行有效排序这一问题,对社会化标签网下新的数据源"标签"的时间因素加以分析和利用,提出一种新的社会化标签的网页排名算法TagRank.该算法通过对网页上用户的标注行为进行挖掘,计算标签的"热度",从而更客观地反映标签的真实质量,以此提高网页排名的准确性.实验证明该算法是切实有效的.
Due to the problem that webpages on web2.0 can't be ranked effectively at present, the authors analyse and utilize the time factor of the new data source "tag" and propose a new algorithm named TagRank based on social annotations for page ranking. This algorithm digs the annotation behavior of the web users, calculates the "heat" of the tags, consequently, it can response the true quality of tags more externally and improve the veracity of page ranking. The experiment shows that the algorithm works effectively.
出处
《扬州大学学报(自然科学版)》
CAS
CSCD
2008年第3期49-52,共4页
Journal of Yangzhou University:Natural Science Edition
基金
江苏省自然科学基金资助项目(BK2005046)