期刊文献+

一种鲁棒的概率主成分分析方法 被引量:3

A Robust Probability Principle Component Analysis Method
下载PDF
导出
摘要 针对传统主成分对实际样本的奇点不敏感的缺陷,提出了一种鲁棒概率主成分分析(RPP-CA)方法.首先引入连续的决策变量构造新能量函数,将事先给定的硬门限改为自适应确定的软门限,门限值由样本自动确定,再计算概率主成分进行特征提取.与线性主成分分析(LPCA)和概率主成分分析(PPCA)方法相比,RPPCA方法更为实用,有效地减小了奇点的影响,显示出比PPCA更强的稳健性,也扩大了实用范围.实验结果表明,RPPCA方法的分类准确率比LPCA方法平均提高了3.2%,比PPCA方法平均提高了0.7%. In order to overcome the drawback that traditional principal component analysis fails to the outliers existing in the realistic data, a robust probability principal component analysis (RPPCA) method is proposed. A continuous decision variable is introduced into the energy function, and the preset hard threshold is replaced by a soft adaptive threshold which is automatically determined by the data. The algorithm is then embedded in the procedure of PPCA's principal component feature extraction. Compared with PCA and probability principal component analysis (PPCA), the proposed RPPCA can resist outlier well, is more robust than PPCA, and enlarges the real application area. The simulation results show that the algorithm improves 3.2G classification accuracy to LPCA, and 0.7G to PPCA on average.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第10期1217-1220,共4页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2007AA06Z217)
关键词 主成分 鲁棒 概率主成分分析 特征提取 principle component robustness probability principal component analysis feature extraction
  • 相关文献

参考文献9

  • 1TIPPING M E, BISHOP C M. Probabilistic principal component analysis[J]. J Roy Statist Soc, Series B,1999, 61(3): 611-622.
  • 2BISHOP C M. Latent variable models, learning in graphical models [M]. Jordan M I. Cambridge, MA, USA: MIT Press, 1999: 371-403.
  • 3ZHAO Weixiang, CHEN Dezhao, HU Shangxu. Detection of outlier and a robust BP algorithm against outlier [J]. Computers & Chemical Engineering, 2004, 28(8): 1403-1408.
  • 4BULLEN R J, CORNFORD D, NABNEY I T. Outlier detection in scatterometer data: neural network approaches [J]. Neural Networks, 2003, 16(3): 419- 426.
  • 5XU Lei, YUILLE A L. Robust principal component analysis by self-organizing rules based on statistical physics approach [J]. IEEE Trans on Neural Networks, 1995, 6(1): 131-143.
  • 6GAVRILA D M, GIEBEL J. Shape-based pedestrian detection and tracking [C]// Proceedings of IEEE Intelligent Vehicle Symposium. Piscataway, NJ, USA: IEEE Press, 2002: 8-14.
  • 7Zhao L, Thorpe C E. Stereo and neural network-based pedestrian detection [J]. IEEE Trans on Intelligent Transportation Systems, 2000, 1(3): 148-154.
  • 8The MIT-CBCL Face Recognition Database [EB/OL]. (2003-01-08) [2007-11-16]. http://chcl. mit. edu/ software-datasets/heisele/facerecognition-database. html.
  • 9CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernelbased learning methods [M]. Cambridge, England: Cambridge University Press, 2000.

同被引文献38

  • 1沈红斌,王士同,吴小俊.离群模糊核聚类算法[J].软件学报,2004,15(7):1021-1029. 被引量:37
  • 2杨晔宏,李伟生.小生境概率主成分分析分布估计算法[J].微电子学与计算机,2006,23(7):204-207. 被引量:2
  • 3杨福增,张艳宁,王峥,杨青.基于小波变换的Wiener滤波算法去除苹果图像噪声[J].农业机械学报,2006,37(12):130-133. 被引量:10
  • 4杨福增,王峥,杨青,张艳宁.基于小波变换的Wiener滤波方法在农产品图像去噪中的应用[J].农业工程学报,2007,23(2):145-150. 被引量:12
  • 5董广军.高光谱影像流形降维与融合分类技术研究[D].郑州:解放军信息工程大学,2008.
  • 6PARSONS L, HAQUE E, LIU H. Subspace clustering for high dimensional data: a review [J]. SIGKDD Explorations, 2004, 6(1): 90-105.
  • 7AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic subspace clustering of high dimensional data for data mining applications [C] ///Proceedings of ACM SIGMOD International Conference on Management of Data. New York, USA: ACM, 1998: 94- 105.
  • 8AGGARWAL C, PROCOPIUC C, WOLF J L, et al. Fast algorithms for projected clustering [C]//Proceedings of ACM SIGMOD International Conference on Management of Data. New York, USA: ACM, 1999:61-72.
  • 9DOMENICONI C, PAPADOPOULOS D, GUNOPULOS D, et al. Subspace clustering of high dimensional data [C]//Proceedings of SIAM International Conference on Data Mining. Philadelphia, PA, USA: SIAM, 2004: 517-521.
  • 10JING Liping, NG M K, HUANG J Z. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data [J].. IEEE Transactions on Knowledge and Data Engineering, 2007, 19 (8): 1026-1041.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部