期刊文献+

聚类在合作学习分组中的应用 被引量:2

Application of Clustering in Cooperative Learning Grouping
下载PDF
导出
摘要 分好学习小组,是合作学习顺利进行的前提。而构建合作小组也要有科学依据,要合理可行。本文根据聚类的特性"物以类聚,人以群分",在分组中,依据学生的知识基础、学习能力、学习态度、性格特征、兴趣爱好和性别六个特征,利用K-Modes聚类算法的分类特性,将班级学生划分聚类;根据聚类结果,抽取各类中成员,再结合教师的综合决策和学生们自己的认可,最终构建小组成员。本文引入了聚类的概念,应用到合作学习分组中,结果充分体现了"组内异质,组间同质"的分组原则。 Setting up appropriate learning groups, is the first dement of group cooperation learning. Building groups should be according to the scientific theories and be feasible. This paper leads into clustering, which trait is that things of one kind come together, and man live in gang. In the process, there are six features: the foundation of knowledge, the ability of learning, the attitude of learning, character, hobby and sex. Using the characteristic of K-Modes clustering algorithm and partition the students, then there will be clustering results. Connect with the teacher's decision-making and the students' recognizing, it created diversity in a group and homogeneity with groups, which manifests the rule of grouping effectively.
作者 王敏 林庆
出处 《计算机与现代化》 2008年第10期70-72,共3页 Computer and Modernization
关键词 合作学习 小组 聚类 分类属性 cooperative learning grouping clustering categorical attribute
  • 相关文献

参考文献9

  • 1王坦.合作学习论[M].北京:教育科学出版社,1994..
  • 2候建军.小学小组合作学习存在的问题及其策略的研究[D].辽宁师范大学硕士学位论文,2005.
  • 3李永珺,刘六生.合作学习的问题研究[J].学术探索,2003(S1):269-271. 被引量:3
  • 4张修海.合作学习分组策略的教学与研究[J].辽宁师专学报(社会科学版),2006(2):75-76. 被引量:20
  • 5Huang Zhexue. Extensions to the K-means algorithm for clustering large data sets with categorical values [ J ]. Data Mining Knowledge, 1998,2(2) :283-304.
  • 6Michael K Ng, Mark Junjie Li, et al. On the impact of dissimilarity measure in K-Modes clustering algorithm [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 (3) : 503 -507.
  • 7何增有,徐晓飞,邓胜春.Squeezer:An Efficient Algorithm for Clustering Categorical Data[J].Journal of Computer Science & Technology,2002,17(5):611-624. 被引量:32
  • 8Songfeng Lu, Zhengding Lu (College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China).A New Clustering Algorithm for Categorical Attributes[J].International Journal of Minerals,Metallurgy and Materials,2000,14(4):318-322. 被引量:2
  • 9G Gan, yang Z, Wu J. A genetic K-Modes algorithm for clustering categorical Data [ C ]// Proc. of ADMA' 05. 2005 : 195-202.

二级参考文献19

  • 1周海乾,傅锡增.大班教学的合作学习组织方式探索[J].教学与管理(中学版),2002(7):48-49. 被引量:15
  • 2Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. ROCK: A robust clustering algorithm for categorical attributes. In Proc. 1999 Int. Conf. Data Engineering, Sydney, Australia, Mar., 1999, pp.512-521.
  • 3Alexandros Nanopoulos, Yannis Theodoridis, Yannis Manolopoulos. C2P: Clustering based on closest pairs. In Proc. 27th Int. Conf. Very Large Database, Rome, Italy, September, 2001, pp.331-340.
  • 4Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases.In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD'96), Portland, Oregon, USA, Aug., 1996,pp.226-231.
  • 5Zhang T, Ramakrishnan R, Livny M. BIRTH: An efficient data clustering method for very large databases. In Proc.the ACM-SIGMOD Int. Conf. Management of Data, Montreal, Quebec, Canada, June, 1996, pp.103-114.
  • 6Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. CURE: A clustering algorithm for large databases. In Proc. the ACM SIGMOD Int. Conf. Management of Data, Seattle, Washington, USA, June, 1998, pp.73-84.
  • 7Karypis G, Han E-H, Kumar V. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 1999, 32(8): 68-75.
  • 8Sheikholeslami G, chatterjee S, Zhang A. WaveCluster: A multi-resolution clustering approach for very large spatial databases. In Proc. 1998 Int. Conf. Very Large Databases, New York, August, 1998, pp.428-439.
  • 9Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. the 1998 ACM SIGMOD Int. Conf. Management of Data, Seattle, Washington,USA, June, 1998, pp.94-105.
  • 10Jiang M FI Tseng S S, Su C M. Two-phase clustering process for outliers detection. Pattern Recognition Letters,2001, 22(6/7): 691-700.

共引文献130

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部