期刊文献+

基于网格和密度的聚类算法的分析与研究 被引量:1

Research and Analysis of Clustering Algorithm Based on Grid and Density
下载PDF
导出
摘要 针对CLIQUE算法的特点以及所存在的问题进行深入的研究。为了进一步提高其处理高维海量数据的能力,在原算法的基础上提出一种基于密度样本分析和基于最优区间分割进行改进的聚类算法,并通过使用仿真数据加以验证是可行的,理论分析与实验结果表明,与原算法相比,改进算法不仅保留原算法的优点,且对大规模数据集有着很好的聚类效果。 The characters and existing problems of CLIQUE clustering algorithm are intensive researched. In order to improve the ability of solving the high dimention and mass data, based on the old algorithm,a modified one with the methods of density and the best space division is presented. Proving it with simulation data and it is feasible. Theory analysis and experimental results demonstrate the improved algorithm not only can keep its old advantages but also can get better clustering resuits.
出处 《现代电子技术》 2008年第20期125-127,共3页 Modern Electronics Technique
关键词 聚类 最优区间分割 密度 CLIQUE算法 clustering the best space division density CLIQUE algorithm
  • 相关文献

参考文献9

  • 1Han J, Kamber M. Data Mining Concepts and Techniques [M]. Morgan Kaufmann Publishers, 2001.
  • 2冯永,吴开贵,熊忠阳,吴中福.一种有效的并行高维聚类算法[J].计算机科学,2005,32(3):216-218. 被引量:6
  • 3王建会,申展,胡运发.一种实用高效的聚类算法[J].软件学报,2004,15(5):697-705. 被引量:26
  • 4业宁,李威,梁作鹏,董逸生.一种Web用户行为聚类算法[J].小型微型计算机系统,2004,25(7):1364-1367. 被引量:20
  • 5Wang W, Yang J, Muntz R. A Statistical Information Grid Approach to Spatial Data Mining[C]. In Proc. 1997 Int. Conf. Very Large Databases, Athens, Greece, 1997 : 186 - 195.
  • 6Hinneburg A,Keim D. An Efficient Approach to Clustering in Large Multimedia Databases with Noise [C]. In: Proc. 1998 Int. Conf Knowledge Discovery and Data Mining, New York : AAAI Press, 1998 : 58 - 65.
  • 7Alexander Hinneburg,Daniel A Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise[C]. KDD, 1998 : 58 - 65.
  • 8Ci Song,Guizani Mohsen, Sharif Hamid. Adaptive Clustering in Wireless Sensor Networks by Mining Sensor Energy Data [C]. Computer Communications,2007:2 968- 2 975.
  • 9Abaseal E,Gareia Lautre I,Mallor F. Data Mining in a Bicriteria Clustering Problem, 2006. 705 - 716.

二级参考文献13

  • 1Han J,Kamber M. Data Mining: Concepts and Techniques. High Education Press, Morgan Kaufman Publishers, 223-257
  • 2Guha U,Rastogi R,Shim K. CURE: an efficient clustering algorithm for large databases. Information System, 2001,26 (1): 35-58
  • 3Zhang T, Ramarkrishnan R,Livny M. BIRCH: an efficient data clustering method for very large database. 1996 ACM 0-89791-794-4/96/0006
  • 4Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial database with noise. In:Proc. 2nd Int'l Conf. Knowledge Discovering in Database and Data Mining (KDD-96)
  • 5Ankerst M,Breunig M,Kriegel H P,Sander J. OPTICS: Ordering points to identity the clustering structure. In: Proc. 1999 ACMSGMOD Int. Conf. Management of Data (SIGMOD'99), 49-60,Philadelphia, PA, June 1999
  • 6Agrawal J, et al. Automatic subspace clustering of high dimensional data mining applications. In:Proc. ACM SIGMOD Inter'l Conf.Management of Data, 1998. 73-84
  • 7Sheikholeslami G, Chatterjee S,Zhang A. WaveCluster: A multiresolution clustering approach for very large spatial database. In:Proc. 1998 Int. Conf. Very Large Data Base,New York, 1998. 428-439
  • 8Wang W,Yang J,Muntz R. STING: A statistical information grid approach to spatial data mining. In: Proc. 1997 Int. Corf. Very Large Data Bases (VLDB'97), Athens, Greece, 1997. 186 - 195
  • 9Nagesh H S,Goil S,Choudhary A N. A Scalable Parallel Subspace Clustering Algorithm for Massive Data Sets. In:Intl. Conf. on Parallel Processing,2000
  • 10Sunderam V S,Geist G A,et al. The PVM Concurrent System:Evolution, Experiences, and Trends. Applied Mathematical Sciences program of the Office of Energy Research,U. S. Department of Energy, 1993

共引文献49

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部