期刊文献+

迭代序列x_(n+1)=(α+βx_(n-k))/(1+sum from i=1 to k x_(n-i+1)~γ)的全局性质

Global Behaviour of Recursive Sequence x_(n+1)=(α+βx_(n-k))/(1+sum from i=1 to k x_(n-i+1)~γ)
下载PDF
导出
摘要 通过函数f(x)=(α+βx)/(1+kx^γ)在[0,+∞]上的单调性,并利用上下极限方法得到了非线性差分方程xn+1=(α+βxn-k)/(1+^k∑i=1x^γn-i+1)正平衡点的全局吸引性,同时还得到正振动解的半循环分布.其中α〉0,0〈β〈1,0〈γ≤1,k∈N,x-k…x0是任意非负实数. The Global attractivity of the positive equilibrium to the following nonlinear difference equations xn+1=(α+βxn-k)/(1+^k∑i=1x^γn-i+1)is investigated by using the lower-upper limit methods and monotone character of the functionf(x) f(x)=(α+βx)/(1+kx^γ)在[0,+∞].The distributions of semicycles to the positive oscillatory solutions are also obtained,where (α〉0,0〈β〈1,0〈γ≤1,k∈N)
出处 《南通大学学报(自然科学版)》 CAS 2008年第3期92-94,共3页 Journal of Nantong University(Natural Science Edition) 
关键词 差分方程 全局吸引 半循环 迭代序列 difference equations global attractivity semicycles iterative sequence
  • 相关文献

参考文献5

  • 1El-Owaidy H M,Ahmed A M,Mousa M S.On asymptoticbehaviour of the difference equation xn+1=α+xxn-nk[].Applied Mathmatics and Coputation.2004
  • 2Devault R,Kosmala W,Ladas G,Schultz S W.Global behavior of y n+1 =( p +y n-k ) ( qy n +y n-k )[].Nonlinear Analysis Theory Methods Applications.2001
  • 3Yan X X,Li W T,Sun H R.Global attractivity in a higher order nonlinear difference equation[].Appl Math E-Notes.2002
  • 4D.C.Zhang,B.Shi.Global behavior of solution of a nonlinear difference equation[].Journal of Applied Mathematics.2004
  • 5Abu-Saris R M,DeVault R.Global Stability of yn+1=A+yyn-nk[].Journal of Applied Mathematics.2003

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部