摘要
通过函数f(x)=(α+βx)/(1+kx^γ)在[0,+∞]上的单调性,并利用上下极限方法得到了非线性差分方程xn+1=(α+βxn-k)/(1+^k∑i=1x^γn-i+1)正平衡点的全局吸引性,同时还得到正振动解的半循环分布.其中α〉0,0〈β〈1,0〈γ≤1,k∈N,x-k…x0是任意非负实数.
The Global attractivity of the positive equilibrium to the following nonlinear difference equations xn+1=(α+βxn-k)/(1+^k∑i=1x^γn-i+1)is investigated by using the lower-upper limit methods and monotone character of the functionf(x) f(x)=(α+βx)/(1+kx^γ)在[0,+∞].The distributions of semicycles to the positive oscillatory solutions are also obtained,where (α〉0,0〈β〈1,0〈γ≤1,k∈N)
出处
《南通大学学报(自然科学版)》
CAS
2008年第3期92-94,共3页
Journal of Nantong University(Natural Science Edition)
关键词
差分方程
全局吸引
半循环
迭代序列
difference equations
global attractivity
semicycles
iterative sequence