期刊文献+

四阶Boussinesq模型验证及非线性精度对数值结果的影响 被引量:4

Validation of a Fourth Order Boussinesq Model and the Effect of Nonlinearity Accuracy on Numerical Results
下载PDF
导出
摘要 基于Madsen和Schffer(1998)给出的一组四阶Boussinesq模型,在非交错网格下基于有限差分法建立了一维数值求解模型。在时间步进上采用三阶Adams-Bashforth预报、四阶Adams-Moulton校正的格式,模型中引入了内部源项,这更有效地避免造波板二次反射问题。数值模拟了波浪在潜堤上的波浪传播变形,利用Luth等(1994)的实验数据来检验本文模型。在模拟Ohyama等(1994)的实验时,讨论非线性精度对数值结果的影响,结果表明高阶非线性对数值模拟波浪演变非常重要:非线性精度越高,其对比效果越好。 Based on a fourth order Boussinesq model by Madsen and Schǎffer ( 1998 ), a numerical implementation of the model in one horizontal direction is established by finite difference method in unstaggered grids. A composite fourth order Adams-Bashforth-Moulton scheme is used to step the model forward in time. A grid-interior source function is utilized in present model to avoid the re-reflection. Numerical simulations of wave propagating over submerged sills are carded out. Experimental data by Luth et. al (1994) are used to test the applicability of the present model. Numerical simulations are done upon the Ohyama el.al's experiment (1994), and the effects of three different nonlinearities in present model are discussed. Results demonstrate high order nonlinearity is important in Boussinesq modelling of wave evolution: The higher the nonlinear accuracy is, the better the comparison is.
出处 《海洋通报》 CAS CSCD 北大核心 2008年第5期1-7,共7页 Marine Science Bulletin
基金 国家自然科学基金(50479053,10672034)
关键词 Boussinesq模型 非线性 波浪 Boussinesq model nonlinearity wave
  • 相关文献

参考文献10

  • 1Peregrine D H. Long waves on a beach [J]. Journal of Fluid Mechanics, 1967, 27(4): 815-827.
  • 2Madsen P A, Serensen O R. A new form of the Boussinesq Equations with improved linear dispersion characteristics, Part 2. A slowly-varying bathymetry [J]. Coastal Engineering, 1992, 18: 183-204.
  • 3Nwogu O. An alternative form of the Boussinesq Equations for near shore wave propagation [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1993, 119: 618-638.
  • 4Wei G, Kirby J T, Grilli S T, Subramanya R. A full nonlinear Boussinesq model for surface waves. Ⅰ: Highly nonlinear, unsteady waves [J]. Journal of Fluid Mechanics, 1995, 294: 71-92.
  • 5Madsen P A, Schaffer H A. Higher-order Boussinesq -type equations for surface gravity waves: derivation and analysis [J]. Proc. R. Soc. Lond. A, 1998, 356:3 123-3 184.
  • 6Gobbi M F, Kirby J T. Wave evolution over submerged sills: Tests of a high-order Boussinesq model [J]. Coastal Engineering, 1999, 37: 57-96.
  • 7Madsen P A, Bingham H B, Liu Hua. A new method for fully nonlinear waves from shallow water to deep water [J]. Journal of Fluid Mechanics, 2002, 462: 1-30.
  • 8刘忠波.高阶Boussinesq方程的研究[D].大连理工大学博士论文,2006.
  • 9Luth H R, Klopman G, Kitou N. Kinematics of waves breaking partially on an offshore bar, LDV measurements of waves with and without a net onshore current [R]. 1994, Delft Hydraulics.
  • 10Ohyama T, Kiota, W, Tada A. Applicability of numerical models of nonlinear dispersive waves [J]. Coastal Engineering, 24:297-313.

同被引文献28

  • 1唐军,沈永明,邱大洪.双曲型缓坡方程的数值求解[J].中国工程科学,2007,9(4):70-74. 被引量:3
  • 2Tang J, Shen Y M, Zheng Y H, Qiu D H. An efficient computational model for solving the mild slope equation [J]. Coastal Engineering, 2004, 51 (2): 143-154.
  • 3Schaffer H A, Madsen P A. Further enhancements of Boussinesq -type equations [J]. Coastal Engineering, 1995, 26 (1-2): 1-14.
  • 4Wei G, Kirby J T, Grill S T, et al. A fully nonlinear Boussinesq model for surface-waves .1. Highly nonlinear unsteady waves [J]. Jounal of Fluid Mechanics, 1995,121 (5): 251-261.
  • 5Madsen P A, Schaffer H A. Higher-order Boussinesq-type equations for surface gravity waves :derivation and analysis[J]. Roy Soc of London Phil Tr A, 1998, 356(1749): 3153-3159.
  • 6Chen Qin, Madsen P A, Schaffer H A, Basco D R. Wave-current interaction based on an enhanced Boussinesq equation approach [J]. Coastal Engineering, 1998, 33: 11-39.
  • 7Kirby J T, Wei G, Qin Chen et al. FUNWAVE 1.0: Fully nonlinear Boussinesq Wave Model Documentation and User's Manual. Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark, DE 19716. Research Report NO. CACR-98-06 September, 1998.
  • 8Wei G, Kirby J T. A time-dependent numerical code for extended Boussinesq equations [J]. Jounal of Waterway Port, Coastal and Ocean Engineering, 1995, 121: 251-261.
  • 9Wei G, Kirby J T, Sinha A. Generation of waves in Boussinesq models using a source function method. Coastal Engineering, 1999,36: 271-299.
  • 10Gobbi M F, Kirby J T. Wave evolution over submerged sills: Tests of a high-order Boussinesq model [J]. Coastal Engineering, 1999, 37: 57-96.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部