期刊文献+

关于Heisenberg型群上次Laplace算子的唯一延拓性

On unique continuation property for the sub-Laplacian in groups of Heisenberg type
下载PDF
导出
摘要 通过研究Heisenberg型群球面函数的性质,得到带奇异位势的次Laplace方程解的唯一延拓性,推广了文献中的相关结论. In this paper, properties of the spherical function in groups of Heisenberg type are established, and then some unique continuation results of solutions for the sub-Laplace equation with the singular potential are obtained.
出处 《西南民族大学学报(自然科学版)》 CAS 2008年第5期917-920,共4页 Journal of Southwest Minzu University(Natural Science Edition)
基金 江西省自然科学基金(No.2007GZS0371)
关键词 唯一延拓性 Heisenberg型群 次LAPLACE算子 unique continuation Heisenberg type group sub-Laplacian
  • 相关文献

参考文献7

二级参考文献19

  • 1韩军强,钮鹏程,韩亚洲.Heisenberg型群上的几类Hardy型不等式[J].系统科学与数学,2005,25(5):588-598. 被引量:2
  • 2Bahouri H. Non prolongment unique des solutions d'operateurs. Ann. Inst. Fourier, Grenoble, 1986, 36(4): 137-155.
  • 3Bony J M. Principe du maximum, inequalite de Harnack et unicite du probleme de Cauchy pour les operateur elluptiques degeneres. Ann. Inst. Fourier, Grenoble, 1969, 19(1): 277-304.
  • 4Garofalo N and Lanconelli E. Frequencey functions on the Heisenberg group, the uncertainly principle and unique continuation. Ann. Inst. Fourier, Grenoble, 1990, 40(2): 313-356.
  • 5Pan Y. Unique continuation for Schrodinger operators with singular potential. Comm. in PDE, 1992, 17(5): 953-965.
  • 6Pan Y and Tom Wolff. A Remark on unique continuation. J. Geom. Analysis, 1998, 8(8): 599-604.
  • 7[1]Protter M H. Unique continuation for elliptic equations. Taran. Amer. Math. Soc., 1960, 95(1):81-91.
  • 8[2]Pederson R N. On the unique continuation theorem for certain second and fourth order elliptic operators. Comm. Pure Appl. Math., 1958, 11: 67-80.
  • 9[3]Garofalo N. Unique Continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension. J.D.E., 1993, 104: 117-146.
  • 10[4]Garofalo N and Shen Z. Carleman estimates for a subelliptic operator and unique continuation.Ann. Inst. Fourier, Grenoble, 1994, 44(1): 129-166.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部