期刊文献+

多变量随机波动率模型及在中国股市的应用 被引量:2

下载PDF
导出
摘要 文章在一维随机波动率(SV)模型基础上,通过扩展,建立了多个多变量随机波动率(MSV)模型。首次将MSV模型大规模应用于中国沪深两市指数周收益率数据,利用MCMC方法进行模型估计,选用DIC准则进行模型比较,得出拟合程度最好的MSV模型。结果显示,加入波动率单边Granger因果关系的MSVGt-AR(1)模型对沪深两市的拟合能力最好。
出处 《统计与决策》 CSSCI 北大核心 2008年第18期82-84,共3页 Statistics & Decision
基金 国家985工程二期项目(07200701)
  • 相关文献

参考文献11

  • 1Bollerslev, T., Engle, R. F. and Wooldridge J. M., 1988, A Capital Asset Pricing Model with Time Varying Covariances [J]. Journal of Political Economy, 96.
  • 2Engle, R. F., 2002, Dynamic Conditional Correlation A Simple Class of Multivariate GARCH Models [J]. Journal of Business and Econometric Statistics, 17.
  • 3Harvey, A. C., Ruiz, E. and Shephard, N., 1994, Multivariate Stochastic Variance Models [J]. Review of Economic Studies, 61.
  • 4Chib, S., Nardari, F. and Shephard, N., 2005, Analysis of High Dimensional Multivariate Stochastic Volatility Models [J]. Journal of Econometrics, 134.
  • 5Yu, J. and Meyer, R., 2006, Multivariate Stochastic Volatility Models : Bayesian Estimation and Models Comparison [J]. Econometric Reviews, 25.
  • 6Andersen, T. and Sorensen, B., 1996, GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study [J]. Journal of Business and Economic Statistics, 14.
  • 7Jacquier, E., Poison, N. G. and Rossi, P. E., 1994, Bayesian Analysis of Stochastic Volatility Models [J]. Journal of Business and Economic Statistics, 12.
  • 8Andersen, T., Chung, H. and Sorensen, B., 1999, Efficient Method of Moments Estimation of a Stochastic Volatility Models: A Monte Carlo Study [J]. Journal of Econometrics, 91.
  • 9Berg, A., Meyer, R. and Yu, J., 2004, Deviance Information Criterion for Comparing Stochastic Volatility Models [J]. Journal of Business and Economic Statistics, 22.
  • 10Chib, S., 1995, Marginal Likelihood from the Gibbs Output [J]. The Journal of the American Statistical Association, 90.

同被引文献19

  • 1魏宇,余怒涛.中国股票市场的波动率预测模型及其SPA检验[J].金融研究,2007(07A):138-150. 被引量:43
  • 2Epps T W. Comovements in Stock Prices in the Very Short Run [J].Journal of the American Statistical Association,1979, 74(566).
  • 3Bollerslev, T, R. Y. Chou, K. F. Kroner. ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence[J].Journal of Eeonometrics,1992,52(1).
  • 4Alexander C.O. Orthogonal GARCH[C]. C.O. Alexander, Mastering Risk, Volume 2, Financial Times, U.S.A., Prentice Hall, 2001.
  • 5R F Engle. Dynamic Conditional Correlation: A Simple Class of Multivariate GARCH Models[J].Journal of Business and Economic Statistics, 2002,22(3).
  • 6RueyS.Tsay,AmlysisofFinancialTimeSeries[M].潘家柱,译.201-228.
  • 7Engle,R.F.Dynamic Conditional Cortdation--A Simple Class of Multivariate GARCH Models[J].Journal of Businessand Econometric Statistics,2002,17.
  • 8Chib,S.,Nardari,F.,and Shephard,N.Analysis of high dimensional multivariate stochastic volatility models[D].Working paper,Washington University,St Louis,1999.
  • 9Chib,S.,Nardari,F.and Shephatd,N.Analysis of HigDimensional Multivariate Stochastic Volatility Models [J].Joumaof Econometrics,2005:134.
  • 10YuJ.and Meyer,R.Multivariate Stochastic Volatility Models:Bayesian Estimation and Models Comparison[l].Econometric Reviews,2006:25.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部