摘要
针对洪水预报中糙率的实时修正问题,采用卡尔曼滤波技术实现动量方程实时校正糙率,以提高水动力学模型的洪水预报精度。同时考虑河道下游糙率对上游水深的影响,使反演的糙率更显客观。选择长江干流寸滩至万县河段进行试验,应用2004年该河段洪水资料作验证。结果表明,实时反演的糙率对提高洪水预报精度有效。
To detect the effect of roughness parameters in real-time updating for flood forecasting,and to improve the accuracy of hydraulic forecasting model, the Kalman filter was applied to realize the real-time updating of the roughness parameters by the momentum equation. In order to reflect the roughness parameters impersonality, the influence of water depth,caused by the downstream river segment can he accounted for. The calculation of flood forecasting for river section from Cuntan to Wanxian of Yangtze River verifies that the inverse analysis of channel parameters can be resultful in promoting the accuracy of forecasting by adopting the flood information of 2004.
出处
《水电能源科学》
2008年第5期43-45,82,共4页
Water Resources and Power
基金
国家科技支撑计划基金资助项目(2006BAC05B02)
关键词
实时洪水预报
卡尔曼滤波
糙率参数
反问题
real-time flood forecast
Kalman filter
roughness parameter
inverse analysis