期刊文献+

基于g期望的一个推广的Hlder不等式

Generalization of the Hlder Inequality for g expectation
下载PDF
导出
摘要 在g满足次线性条件下,针对非负生成元,利用引理2,推导出g期望的一个推广的Hlder不等式;在此基础上,给出了两个相关的推论。推论2就是关于g期望的Hlder不等式。 This paper is concerned with the use of lemma 2 for the introduction of a generalized form of the Holder inequality for g expectation when g satisfies the sublinear condition and is a nonnegative generator. Further more, this paper uses the generalized form of the Holder inequality to establish two corollarys.
出处 《山东轻工业学院学报(自然科学版)》 CAS 2008年第3期61-63,共3页 Journal of Shandong Polytechnic University
关键词 倒向随机微分方程 g期望 HOLDER不等式 推广的Holder不等式 backward stochastic differential equation g-expectation Holder inequality generalized form of the Hoder inequality
  • 相关文献

参考文献2

  • 1JIANG LONG,CHEN ZENGJING School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu,China. E-mail: jianglong@math.sdu.edu.cn School of Mathematics and System Sciences, Shandong University, Jinan 250100, China..ON JENSEN'S INEQUALITY FOR g-EXPECTATION[J].Chinese Annals of Mathematics,Series B,2004,25(3):401-412. 被引量:26
  • 2吴善和.Hlder不等式的一个推广及应用[J].广西师范学院学报(自然科学版),2003,20(3):44-47. 被引量:2

二级参考文献14

  • 1徐利治 王兴华.数学分析的方法及例题选讲[M].北京:高等教育出版社,1984.120.
  • 2[1]Peng, S., BSDE and related g-expectations, Pitman Research Notes in Mathematics Series, 364, 1997,141-159.
  • 3[2]Chen, Z. & Epstein, L., Ambiguity, risk and asset returns in continuous time, Econometrica, 70(2002),1403-1443.
  • 4[3]Briand, P., Coquet, F., Hu, Y., Memin, J. & Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectation, Electon. Comm. Probab., 5(2000), 101-117.
  • 5[4]Coquet, F., Hu, Y., Memin, J. & Peng, S., Filtration consistent nonlinear expectations and related g-expectation, Probab. Theory Related Fields, 123(2002), 1-27.
  • 6[5]Chen, Z. & Peng, S., A general downcrossing inequality for g-martingales, Statistics and Probability Letters, 46(2000), 169-175.
  • 7[6]Pardoux, E. & Peng, S., Adapted solution of a backward stochastic differential equation, Systems Control Letters, 14(1990), 55-61.
  • 8[7]Peng, S., A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation,Stochastics, 38:2(1992), 119-134.
  • 9[8]El Karoui, N., Peng, S. & Quenez, M. C., Backward stochastic differential equations in finance, Math.Finance, 7:1(1997), 1-71.
  • 10Holder O. Uber einen Mittelwerthssatz[ M]. Naehr Ges Wiss Gottingn, 1889.38-47.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部