期刊文献+

采用特征描述的H.264压缩视频运动分割 被引量:1

Motion Segmentation Using Characteristic Description for H.264 Compressed Video
下载PDF
导出
摘要 H.264视频压缩标准以其优良的压缩效率和编码灵活性得到了广泛的应用。提出了一种基于H.264压缩域的运动对象分割方法,首先从压缩视频中提取运动场,采用加权中值滤波方法滤除运动场的噪声矢量,再运用后向估计的方法重建预测运动场并进行运动场的累积,然后基于幅度、散度和旋度3个运动特征,采用改进的统计区域合并方法将运动对象分割出来。实验结果表明,该方法可有效地从H.264压缩视频中提取运动对象且分割质量较好。 The H. 264 video compression standard is extensively applied thanks to its excellent compression efficiency and coding flexibility. A moving object segmentation approach in H. 264 compressed domain is proposed in this paper. The motion fields are first extracted from the compressed video, in which the noise vectors are removed by weighted median filter. Then the predicted motion fields reconstructed by backward estimation are used to accumulate the motion field. After that, the modified statistical region merging is exploited to segment the moving object based on three motion characteristics magnitude, divergence and curl. Experimental results demonstrate that our approach can efficiently extract the moving objects from H. 264 compressed and as the segmentation quality is good.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第10期1995-1998,共4页 Journal of Image and Graphics
基金 国家自然科学基金项目(60572127 60602012) 上海市重点学科基金项目(T0102)
关键词 H.264压缩域 运动特征 分割 H. 264 compressed domain, motion characteristic, segmentation
  • 相关文献

参考文献7

  • 1Radke R J, Andra S, Al-Kofahi O, et al. Image change detection algorithm: A systematic survey [J]. IEEE Transactions on Image Processing, 2005, 14 (3) : 294 - 307.
  • 2Wang Y, Loe K F, Tan T, et al. Spatiotemporal video segmentation based on graphical models [ J]. IEEE Transactions on Image Processing, 2005, 14(7) : 937 -947.
  • 3Shen H F, Zhang L P, Huang B, et al. A MAP approach for joint motion estimation, segmentation, and super resolution [ J ]. IEEE Transactions on Image Processing, 2007, 16(2): 479 -490.
  • 4徐剑峰,刘志,张兆杨.基于熵模型的压缩域运动对象检测[J].中国图象图形学报,2007,12(10):1815-1818. 被引量:5
  • 5Zeng W, Du J, Gao W, et al. Robust moving object segmentation on H. 264/AVC compressed video using the block-based MRF model [ J]. Real-time Imaging, 2004, 11(4) : 290 - 299.
  • 6Liu Z, Zhang Z Y, Shen L Q. Moving object segmentation in the H. 264 compressed domain [J]. Optical Engineering, 2007,46( 1 ) : 0170031 - 0170035.
  • 7Nock R, Nielsen F. Statistical region merging [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1452-1458.

二级参考文献9

  • 1刘龙,刘贵忠,刘洁瑜,王占辉.一种基于MPEG压缩域的运动对象分割算法[J].西安交通大学学报,2004,38(12):1264-1267. 被引量:5
  • 2陈杉,于鸿洋.基于MPEG压缩域的运动对象检测方法[J].信号处理,2004,20(6):628-631. 被引量:3
  • 3Fieguth P, Terzopoulos D. Color-based tracking of heads and other mobile objects at video frame rates [ A ]. In : Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [ C ], San Juan, Puerto Rico, 1997 : 21 - 27.
  • 4Faloutsos C, Equitz W, Flickner M, et al. Efficient and effective querying by image content [J]. Journal of Intelligent Information Systems, 1994, 17( 1 ) : 231-262.
  • 5Venkatesh Babu R, Ramakrishnan K R, Sfinivasan S H. Video object segmentation: A compressed domain approach [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14 (4) : 462 - 474.
  • 6Zeng W, Du J, Gao W, et al. Robust moving object segmentation on H. 264/AVC compressed video using the block-based MRF model [J]. Real-Time Imaging, 2005, 11 (4) : 290 - 299.
  • 7Liu Z, Zhang Z Y, Shen L Q. Moving object segmentation in the H. 264 compressed domain[J]. Optical Engineering, 2007, 46(1): 017003.
  • 8Ma Y F, Hua X S. A generic framework of user attention model and its application in video summarization [ J ]. IEEE Transactions on Multimedia, 2005, 7(5 ): 907-919.
  • 9Wong A K C, Sahoo P K A. A gray-level threshold selection method based on maximum entropy principle[ J ]. IEEE Transactions on Systems And Cybernetics, 1989, 19(4): 866-871.

共引文献4

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部