期刊文献+

基于语义概念的视频检索系统的设计与实现 被引量:4

Design and Implementation of Semantic Concept Based Video Retrieval System
下载PDF
导出
摘要 设计并实现了一种基于语义概念的视频检索系统,该系统包括视频镜头分割与关键帧提取、语义概念检测和用户检索3个部分。系统采用镜头分割与关键帧提取对视频进行层次分割,并对关键帧图像提取有效的图像低层特征,再使用支持向量机(SVM)进行概念的检测,最后针对概念内容进行视频检索。在概念检测中,提出了一种基于验证平均准确率的线性加权方法对SVM的分类结果进行后融合。实验结果表明,该方法可以达到较高的检索准确率。 This paper introduces the design and implementation of a semantic concept based video retrieval system, which consists of shot boundary detection and key frame extraction subsystem, semantic concept detection subsystem and user retrieval subsystem. First, digital video is divided into hierarchical structure for retrieval. Then, efficient low level feature of key frames are extracted. Support Vector Machine is used to detect concepts in such key frames, and the video retrieval is based on those concepts. In the procedure of concept detection, we take a linearly weighted fusion method based on validation precision to improve the average precision. Experiments show that the Mean Average Precision of our system is as high as the best one of all submissions.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第10期2055-2058,共4页 Journal of Image and Graphics
基金 国家自然科学基金项目(60502034 60625103) 国家863计划项目(1006AA01Z124)
关键词 视频检索 支持向量机 概念检测 融合 video retrieval, support vector machine (SVM) , concept detection, fusion
  • 相关文献

参考文献5

  • 1Smeaton A F, Over P, Kraaij W. Evaluation Campaigns and TRECVid[ DB/OL]. http://doi. acm. org/10. 1145/1178677. 117872, 2006.
  • 2Cotsaccs C, Nikolaidis N, Pitas I. Video shot detection and condensed representation [ J ]. IEEE signal processing magazine, 2006, 23(2) : 28-37.
  • 3Amir A, Argillander J, Campbell M. Ibm Research Trecvid-2005 Video Retrieval System [ EB/OL ]. http://www-nlpir.nist. gov/ projects/tvpubs/tv.pubs. org. html, 2005.
  • 4Chang S F, Hsu W, Kennedy L. Columbia University TRECVID- 2005 Video Search and High-Level Feature Extraction [EB/OL].http ://www-nipir. hist. gov/projects/tvpubs/tv. pubs. org. html,2005.
  • 5Chang Chih-chung, Lin Chih-jen. LIBSVM: A Library for Support Vector Machines [ CP/OL]. http://www.csie. ntu. edu. tw/-cjlin/ libsvm, 2001.

同被引文献37

  • 1余卫宇,谢胜利,余英林,潘晓舟.语义视频检索的现状和研究进展[J].计算机应用研究,2005,22(5):1-7. 被引量:14
  • 2唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 3Hong Lu,Yap-Peng Tan.An effective post-refinement method for shot boundary detection[J].IEEE Transactions on Circuits and Systems for Video Technology,2005,15(3):1407-1421.
  • 4BURGERS C J C. A tutorial on support vector machines for pattern [ J]. Data Mining and Knowledge Discovery, 1998,2 (2) : 121- 127.
  • 5CHAPELLE O, VAPNIK V, BACSQUEST O, et al. Choosing multiple parameters for support vector machines[ J]. Machine Learning, 2002,46( 1 ) : 131-159.
  • 6TIPPING M E, ANITA F. Fast marginal likelihood maximization for sparse Bayesian models[ C]//Proc of the 9th International Workshop on Artificial Intelligence and Statistics. 2003:3-6.
  • 7CHEE S W, DONG K P, SO0 J P. Efficient use of MPEG-7 edge histogram descriptor[ J], ETRI Journal,2002,24( 1 ) :3430.
  • 8AMET A,ERTUZUN A,ERICL A. Texture defect detection using sub band domain co-occurrence matrices [ C ]//Proe of IEEE Southwest Symposium on Image Analysis and Interpretation. 1998:205-210.
  • 9SMEATON A F, OVER P, KRAAIJ W. Evaluation campaigns and TRECVid [ EB/OL ]. [ 2006 ]. http://doi, acre. org/10. 1145/ 1178677. 117872.
  • 10CHANG C C, LIN C J. LIBSVM:a library for support vector machines [ EB/OL]. (2007). http://www, csie. ntu. edu. tw/cjlin/ libsvm.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部