期刊文献+

面向复杂簇的聚类算法研究与实现 被引量:4

RESEARCH AND IMPLEMENTATION OF COMPLEX CLUSTER ORIENTED CLUSTERING ALGORITHM
下载PDF
导出
摘要 有效聚类各种复杂的数据对象簇是聚类算法应用于事务对象划分、图像分割、机器学习等方面需要解决的关键技术。在分析与研究现有聚类算法的基础上,提出一种基于密度和自适应密度可达的改进算法。实验证明,该算法能够有效聚类任意分布形状、不同密度、不同尺度的簇;同时,算法的计算复杂度与传统基于密度的聚类算法相比有明显的降低。 For transaction item classification,image segmentation and machine learning, the key technique is to handle complicatedly distributed clusters efficiently. On the basis of the analysis and research of traditional clustering algorithms, a clustering algorithm based on density and adaptive density-reachable is presented. Experimental results show that the algorithm can handle clusters of arbitrary shapes, sizes and densities. At the same time, compared with other density-based algorithms, this algorithm can evidently reduce computing complexity.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第10期32-34,81,共4页 Computer Applications and Software
基金 国家社会科学基金项目(06XTQ011)
关键词 聚类算法 复杂簇 基于密度 自适应密度可达 Clustering algorithm Complex cluster Density-based Adaptive density-reachable
  • 相关文献

参考文献4

  • 1PANG NING TAN,MICHAEL STEINBACH,VIPIN KUMAR,数据挖掘导论[M].范明,范宏建,译.北京:人民邮电出版社,2006.
  • 2JiaweiHan MichelineKamber.数据挖掘概念与技术[M].北京:机械工业出版社,2003.203-221.
  • 3孟海东,张玉英.基于密度和对象方向聚类算法的改进[J].计算机工程与应用,2006,42(20):154-156. 被引量:14
  • 4Sander J, Ester M, Kriegel H P, Xu X. Density-based clustering in spatial databases:The algorithm GDBSCAN and its applications. Data mining and knowledge discovery, 1998,2 (2) : 169 - 194.

二级参考文献8

共引文献34

同被引文献16

  • 1冯永,吴开贵,熊忠阳,吴中福.一种有效的并行高维聚类算法[J].计算机科学,2005,32(3):216-218. 被引量:6
  • 2刘建晔,李芳.一种基于密度的高性能增量聚类算法[J].计算机工程,2006,32(21):76-78. 被引量:12
  • 3刘青宝,侯东风,邓苏,张维明.基于相对密度的增量式聚类算法[J].国防科技大学学报,2006,28(5):73-79. 被引量:13
  • 4宋宇辰,张玉英,孟海东.一种基于加权欧氏距离聚类方法的研究[J].计算机工程与应用,2007,43(4):179-180. 被引量:35
  • 5Ester M,Kriegel H-P, Sander J,et al.Incremental clustering for mining in a data warehousing environment[C]//Proceedings of the 24th International Conference on Very Large Data Bases. New York:Morgan Kaufmann Publishers Inc, 1998:323-333.
  • 6Hsu C C, Huang Y Elncremental clustering of mixed data based on distance hierarchy[J].Expert Systems with Applications: An International Journal, 2008,35 (3) : 1177-1185.
  • 7Zhang T, Ramakrishnan R, Livny M.An efficient data clustering method for very large databases[C]//Proc ACM SIGMOD Conference on Management of Data, Montreal, Canada, 1996 : 103-114.
  • 8Brian Babcock,Shivnath Babu,Mayur Datar,Rajeev Mot-wani,Jennifer Widom.Models and Issues in Data StreamSystems(C).Proceedings of the twenty-first ACMSIGMOD-SIGACT-SIGART symposium on Principlesof database systems.2002,Publisher ACM Press NewYork,NY,USA:l-16.
  • 9N.Jiang,L.Gruenwald.Research Issues in DataStream Association rule Mining.ACM-SIGMOD Re-cord,2006.14-19.
  • 10Barbard Daniel.Requirements for Clustering Data Streams(J).SIGKDD Explorations,2003,3(2):23-27.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部