期刊文献+

累积反馈学习的简单贝叶斯垃圾邮件过滤 被引量:1

NAVE BAYESIAN SPAM FILTERING BASED ON ACCUMULATIVE FEEDBACK LEARNING
下载PDF
导出
摘要 给出了一种基于累积反馈学习的简单贝叶斯邮件过滤方法。在此基础上,通过领域规则的引入,对基于累积反馈学习的简单贝叶斯过滤方法进行了改进。实验结果表明累积反馈学习对不断保持和提高分类器的分类效果是必要的。 In this paper it proposes a Naive Bayesian spam filtering algorithm based on accumulative feedback model. Applying some domain rules in our accumulative feedback Naive Bayesian spam filter, the filter's performance is improved. Experimental results indicate that the accumulative feedback method is necessary on maintaining and enhancing the classifier's effect.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第10期209-211,共3页 Computer Applications and Software
关键词 垃圾邮件过滤 简单贝叶斯 累积反馈学习 Spam filtering Naive Bayesian Accumulative feedback learning
  • 相关文献

参考文献5

  • 1王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 2Androutsopoulosl, Paliouras G, Karkaletsis V. Learning to Filter Spam E-Mail:A Comparison of a Naive Bayesian and a Memory-Based Approach. Proceedings of the Workshop on Machine Learning and Textual Information Access, 4th European Conference on Principles and Practice of Knowledge Discovery in Databases, Lyon, France,2000 : 1 - 13.
  • 3张铭锋,李云春,李巍.垃圾邮件过滤的贝叶斯方法综述[J].计算机应用研究,2005,22(8):14-19. 被引量:23
  • 4Androutsopoulos I, Koutsias J, Chandrinos K V. An Experimental Comparison of Naive Bayesian and Keyword-Based Anti-Spare Filtering with Encrypted Personal E-mail Messages. Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Athens, Greece ,2000 : 160 - 167.
  • 5丁文斌,李斌,罗浩.基于改进贝叶斯的垃圾邮件过滤系统设计与实现[J].计算机工程与应用,2005,41(18):127-130. 被引量:14

二级参考文献62

  • 1李渝勤,孙丽华.基于规则的自动分类在文本分类中的应用[J].中文信息学报,2004,18(4):9-14. 被引量:20
  • 2庞剑锋 卜东波 白硕.基于向量空间模型的文本自动分类系统的研究与实现[EB/OL].www.ict.ac.cn/xueshu/2001/115.doc,.
  • 3Richard 0 Duda,Peter E Hart,David G Stork.Pattern Classification [M].Second Edition,2003-09.
  • 4M. DeSouza, J. Fitzgerald, C. Kempand G. Truong, A Decision Tree based Spam Filtering Agent[EB] . from http:∥www. cs. mu. oz. au/481/2001- projects/gntr/index. html, 2001.
  • 5N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm[J]. Machine Learning, 2(4) :285- 318, 1988[J].
  • 6R. Krishnamurthy and C. Orasan, A corpus-based investigation of junk emails[A]. In: Proceedings of Language Resources and Evaluation Conference (LREC 2002)[C]. Las Palmas de Gran Canaria, Spain, pp. 1773- 1780,May 2002.
  • 7M. Sahami, S. Dumais, D. Heckerman and E. Horvitz, A Bayesian approach to filtering junk e-mail[A]. In:Proc. of AAAI Workshop on Learning for Text Categorization[C]. pp. 55-62, 1998.
  • 8W. Cohen, Fast effective rule induction[A]. In: Machine Learning Proceedings of the Twelfth International Conference[C]. Lake Taho, California, Mongan Kanfmann, pp. 115-123, 1995.
  • 9W. Cohen, Learning rules that classify email[A]. In: Proceedings of the AAAI spring symposium of Machine Learning in Information Access, Palo Alto[C]. California, pp. 18 - 25. 1996.
  • 10X. Carreras and L. Marquez, Boosting Trees for Anti-Spam Email Filtering[A]. In: Proceedings of Euro Conference Recent Advances in NLP (RANLP-2001)[C]. pp. 58-64, Sep. 2001.

共引文献153

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部