摘要
提出一种基于直方图统计学习的人脸检测方法,对人脸样本和非人脸样本进行小波变换,运用一组小波系数来表征各种人脸特征信息。统计每个训练样本的直方图分布,用于描述人脸和非人脸外观特征的概率分布,每个直方图表示一组小波系数与它们在人脸中位置的联合概率密度。该方法可以准确检测自然场景中的多幅人脸,对侧面人脸有很好的检测效果。
This paper presents a face detection method based on histogram statistical learning. It does wavelet transform to the face samples and non-face samples and uses groups of wavelet coefficients to represent all kinds of attributes of face. The probability distribution of visual attributes of face and non-face is represented by statistics of distribution of histograms for each training sample, and each histogram represents the joint probability distribution of a subset of wavelet coefficients and their position on the face. This method can detect multiple faces in the natural scenes accurately. It gives a good detection performance for profile-view face detection.
出处
《计算机工程》
CAS
CSCD
北大核心
2008年第19期182-184,共3页
Computer Engineering
基金
国家"863"计划基金资助项目(2007AA01Z100)
国家自然科学基金资助项目(60675023
60602012)