期刊文献+

凉山半细毛羊初生重性状分形特征分析 被引量:3

Analysis of the fractal properties of the birth weight of Liangshan semi-fine wool sheep
下载PDF
导出
摘要 首次以非线性理论中的分形理论对凉山半细毛羊的初生重数据进行分析,计算了1996~2004年间初生重性状的信息维数、关联维数、无标度区及性状测度范围。结果表明:(1)从1996~2004年凉山半细毛羊的初生重性状的信息维数都集中在0.66529~0.90675,而且无标度区较大,测度范围广。该结果说明,每年羔羊初生重信息维数都较大,群体存在十分丰富的变异,变异范围广,具有十分巨大的育种潜力;(2)相应的关联维数则集中在0.62438~0.86528之间,表明群体内个体遗传结构具有较强的相关性;(3)这两个分形维数能够分别从两个不同的角度揭示群体遗传结构的分形特征。 Understanding of animal population genetic structure about quantitative traits is an important step in animal breeding. In the present study, the data of birth weight of the Liangshan semi-fine wool sheep was first studied by the fractal theory of nonlinear theory. The information dimension, correlation dimension, none-scale range, and the scale range were calculated. The results showed that (1) the information dimensions of the birth weight from 1996 to 2004 ranged from 0.66529 to 0.90675. The none-scale range and the range of the variation were very large. This indicates that the population had large dimensions of the BW (birth weight), large variation, and great potential in breeding; (2) the correlation dimen- sions ranged from 0.62438 to 0.86528, which indicates that the genetic structures of the population were highly correlated; (3) both of the two dimensions could reveal the fractal properties of the population genetic structure through two different aspects, and it was useful in studying the population genetic structure and animal breeding.
出处 《遗传》 CAS CSCD 北大核心 2008年第10期1319-1325,共7页 Hereditas(Beijing)
基金 四川省畜禽育种攻关项目(编号:01NG029-18)资助~~
关键词 分形理论 初生重 凉山半细毛羊 fractal theory birth weight Liangshan semi-fine wool sheep
  • 相关文献

参考文献13

  • 1Mandelbrot BB. The Fractal Geometry of Nature. New York: W H Freeman, 1982.
  • 2Falconer K J(曾文曲等译).分形理论--数学基础及其应用.沈阳:东北工学院出版社,1991.
  • 3Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE. Fractals in biology and medicine. Chaos Solitons Fractals, 1995, 6(1): 171-201.
  • 4West GB, Brown JH, Enquist BJ. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science, 1999, 284(5420): 1677-1679.
  • 5Williams N. Biology: fractal geometry gets the measure of life's scales. Science, 1997, 276(5309): 34-40.
  • 6Weibel ER. Fractal geometry: a design principle for living organisms. Am J Physiol Lung Cell Mol Physiol, 1991, 261(6): 361-369.
  • 7Kunin WE. Extrapolating species abundance across spatial scales. Science, 1998, 281(5382): 1513-1515.
  • 8Cannas SA, Marco DE, Montemurro MA. Long range dispersal and spatial pattern formation in biological invasions. Math Biosci, 2006, 203(2): 155-170.
  • 9Halley JM, Hartley S, Kallimanis AS, Kunin WE, Lennon JJ, Sgardelis SP. Uses and abuses of fractal methodology in ecology. Ecol Lett, 2004, 7(3): 254-271.
  • 10马克明,祖元刚.兴安落叶松种群格局的分形特征信息维数[J].生态学报,2000,20(2):187-192. 被引量:72

二级参考文献13

  • 1李海涛.植物种群分布格局研究概况[J].植物学通报,1995,12(2):19-26. 被引量:83
  • 2Pielou EC 卢泽愚(译).数学生态学(第2版)[M].北京:科学出版社,1991..
  • 3邬建国 李博 等.生态学中的格局与尺度--可逆性面积单元问题.现代生态学讲座[M].北京:科学出版社,1995.1-9.
  • 4Falconer K 曾文曲等(译).分形几何--数学基础及其应用[M].沈阳:东北工学院出版社,1991..
  • 5刘式达 刘式适.分形与分维[M].北京:气象出版社,1993..
  • 6邬建国,现代生态学讲座,1995年,1页
  • 7刘式达,分形与分维,1993年
  • 8周纪纶,植物种群生态学,1992年
  • 9曾文曲(译),分形几何.数学基础及其应用,1991年
  • 10卢泽愚(译),数学生态学(第2版),1991年

共引文献71

同被引文献30

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部