期刊文献+

严格伪压缩映象的复合隐格式迭代序列的收敛率估计

Convergence Rate Estimate of Composite Implicite Iteration Method for Strictly Pseudocontractive Maps
原文传递
导出
摘要 设K是实Banach空间E的非空闭凸集,{Ti}iN=1:K→K是N个严格伪压缩映象且公共不动集F=∩Ni=1F(Ti)≠φ,其中F(Ti)={x∈K:Tix=x}.{αn}n∞=1,{βn}n∞=1[0,1]是实序列且满足条件:(i)sum from n=1 to ∞ (αn)(ii)lim(n→∞)αn=lim(n→∞)βn=0(iii)αnβnL2<1,n≥1其中L≥1是{Ti}iN=1的公共Lipschitz常数.对于任意的x0∈K,设{xn}n∞=1是由下列产生的复合隐格式迭代序列:xn=(1-αn)xn-1+αn Tnynyn=(1-βn)xn-1+βnTnxn其中Tn=Tn mod N,则{xn}强收敛到{Ti}iN=1的公共不动点.结果推广和改进了相关文献的结果,且主要定理的证明方法也是不同的.并且进一步给出了序列的收敛率估计. Abstract : Let E be a real Banach space and let K be a nonempty closed convex subset of E. Let{T1},n^N=1be N strictly pseudocontractive self-maps of K such rhat F=i-1∩^NF(T)≠Фwhere F(T1)={x∈K:T,x=x},{an}n=n^∞,{βn}n=1^∞∈[0,1]be real sequence satisfying the conditions(i)n=1∑^∞an=∞(ii)liman a=∞=limn=∞βn=0(iii)anβnL^2〈1,n≥1 is common Lipschitz constant of{(Ti}^N=1F orx0∈K let{xn}n^∞=1be defined by,xn=(1-αn)xn-1+αnTnyn yn=(1-β)xn-1+βnTnxnwhereTn=Tn med N.,thenXm}converges strongly to common fixed point of{T1}1^N=1 The results gernalize and improve the results of correlation literature, and the methods of " proof of main results are also different. Furthermore, we give convergence rate estimate of the iterative sequence in this paper.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第19期181-188,共8页 Mathematics in Practice and Theory
基金 河南理工大学青年基金(646203)
关键词 严格伪压缩映象 复合隐格式迭代 公共不动点 strictly pseudocontractive maps implicit iteration process common fixed points
  • 相关文献

参考文献18

  • 1Liu L W. Approximation of fixed points of a strictly pseudo-contractive mapping[J]. Proc Amer Math Soc, 1997, 125:1363-1366.
  • 2Browder F E, Petryshyn W V. Construction of fixed points of nonlinear mappings in Hilbert spaees[J]. J Math Anal Appl, 1967,20 : 197-228.
  • 3Hicks T L, Kubicek J R. On the Mann iteration process in Hilbert spaces[J].J Math Anal Appl, 1977,59:498- 504.
  • 4Maruster S. The solution by iteration of nonlinear equations[J]. Prc Amer Math Soc,1977,66..69-73.
  • 5Osilike M O, Udomene A. Demiclosedness principle and convergence results for strictly pseudocontractive mappings of Browder-Petryshyn type[J].J Math Anal Appl, 2001,256 : 431-445.
  • 6Osilike M O. Strong and weak convergence of the Ishikawa iteration methods for a class of nonlinear equations[J]. Bull Korean, Math Soc, 2000,37: 117-127.
  • 7Rhoades B E. Commentson two fixed point iteration methods[J]. J Math Anal Appl,1976,56:741-750.
  • 8Rhoades B E. Fixed point iterations using infinite matrices[J].Trans Amer Math Soc, 1974,196:741-750.
  • 9Osilike M O, Aniagbosor S C, Akuchu B G. Fixed points of asymptotically demicontraetive mappings in arbitrary Banach spaees[J].Pan Amer Math J,2002,12:77-88.
  • 10H-K Xu, Ori R G. An implicit iteration process for nonexpansive mappings[J]. Numer Funct Anal Optim,2001, 22:767-773.

二级参考文献7

  • 1Browder F E. Nonlinear mapping of nonexpansive and accretive type in Banach spaces[J]. Bull Amer Math Soc, 1967;73:875-882
  • 2Morales C. Pseudocontractive mapping and Leray-Schauder boundary condition[J]. Comment Math Univ Carolina, 1979;20:745-746
  • 3Liu L W. Strong convergence of iteration methods for equation involving accretive operators in Banach spaces[J]. Nonlinear Anal, 2000;42:271-276
  • 4Tan K K, Xu H K. Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces[J]. J Math Anal Appl, 1993;178:9-21
  • 5Liu L W. Approximation of fixed points of a strictly pseudocontractive mapping[J]. Proc Amer Math Soc,1997; 125:1363-1366
  • 6Sastry K P R, Babu G V R. Approximation of fixed points of a strictly pseudocontractive mapping on arbitraty closed, convex sets in Banach spaces[J]. Proc Amer Math Soc, 2000;128:2907-2909
  • 7曾六川.关于Ishikawa迭代程序逼近严格伪压缩映象的不动点问题(英文)[J].应用数学,2002,15(1):7-10. 被引量:5

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部