期刊文献+

一类交叉耦合非线性反应扩散方程组的爆破分析 被引量:2

Blow-up Analysis for Reaction-diffusion Model with Cross Coupling of Nonlinearities
原文传递
导出
摘要 主要研究了具有混合型的多重非线性项的抛物方程组的初边值问题.方程组中的非线性项是幂函数和指数混合型的.这些非线性项组合出了源-流交叉耦合,通过比较原理得到了方程组的上下解,并得到了解有限时刻爆破的临界指标. This paper deals with initial-boundary problems for parabolic systems with multiple nonlinear terms of mixed types i. e, combinations of nonlinearities of power and exponent types. The growth of the solutions come from both the sources and the boundary flux. By using the comparison principle, the blow-up criteria are established under different couplings with nonlinear terms of power or exponent types.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第19期204-208,共5页 Mathematics in Practice and Theory
关键词 非线性抛物方程 整体解 有限时刻爆破 上下解 比较原理 nonlinear parabolic equations global solution finite time blow-up upper solutionsub-solution comparison principle
  • 相关文献

参考文献9

  • 1Escobedo M. Herrero M A. Critical blow-up and global existence numbers for a weekly coupled system of reactiondiffusion equations[J]. Arch Rational Mech Anal,1995.129(2):47-100.
  • 2Escobedo M, Herrero M A. A semilinear parabolic system in a bouned domain[J].Annaldi Math Pura and Appl, 1993, CLXV. (Ⅳ):307-315.
  • 3Amann H, Parabolic evolulions equations and nonlinear boundary conditions [J]. Difererential Equation, 1988, 72(3):201-169.
  • 4Eseher J. Global existence and nonexistence for semilinear parabolic systems with non-linear boundary conditions[J].Math Ann,1989,284(3):285-305.
  • 5Song X F, Zheng S N. Blow-up and blow-up rate for a reaction-diffusion model with mutiple-nonlinearities[J]. Nonlinear Anal ,2003,54(2) :279-289.
  • 6Zheng S N. Nonexistence of positive solutions to a semilinear elliptic system and blow-up estimates for a reaction- diffusion system[J]. J Math Anal Appl, 1999,232(2) :293-311.
  • 7Deng K. Global existence and blow-up for a system of heat equation with nonlinear boundary condions[J]. Math Methods Appl Sci,1995,18(2):307-315.
  • 8Wang M X. Global existence and fininite time blow-up for a reaction-diffusion system[J]. Z Angew Math Phys, 2000,51 (1) : 160-167.
  • 9赵立中.具有指数型边界耦合的热传导方程的临界指标[D].博士论文,大连理工大学,2004.

同被引文献9

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部