期刊文献+

用于三维裂纹扩展分析的有限变形不可逆内聚元 被引量:2

FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS
下载PDF
导出
摘要 为了能准确和高效的跟踪动态裂纹扩展,我们发展了三维有限变形的内聚元和一系列不可逆内聚力关系.该内聚元通过采用不可逆内聚力关系来控制裂纹两侧物质的逐渐分离和形成自由表面,这一点可类比于传统有限元对块体材料的离散化.为了展示该方法的预测能力及便于灵活使用的特点,我们模拟了Zehnder和Rosakis所做的重物落下动态断裂实验,值得注意的是该方法可以近似模拟出裂尖的轨迹. We develop a three-dimensional finite-deformation cohesive element and a class of irreversible cohesive laws which enable the accurate and efficient tracking of dynamically growing cracks. The cohesive element governs the separation of the crack flanks in accordance with an irreversible cohesive law, eventually leading to the formation of free surfaces, and is compatible with a conventional finite element discretization of the bulk material. The versatility and predictive ability of the method is demonstrated through the simulation of a drop-weight dynamic fracture test similar to those reported by Zehnder and Rosakis. The ability of the method to approximate the experimentally observed crack-tip trajectory is particularly noteworthy.
出处 《力学进展》 EI CSCD 北大核心 2008年第5期630-640,共11页 Advances in Mechanics
基金 海军研究总署(ONR)基金N00014-95-1-0453资助.
关键词 内聚力关系 有限变形 三维 裂纹扩展 有限元 动态断裂 cohesive law, finite deformations, three dimensional, crack propagation, finite element, dynamic fracture
  • 相关文献

参考文献38

  • 1Zehnder A T, Rosakis A J. Dynamic fracture initiation and propagation in 4340 steel under impact loading. Int J Fracture, 1990, 43:271-285.
  • 2Mathur K K, Needleman A, Tvergaard V. Three dimensional analysis of dynamic ductile crack growth in a thin plate. J Mech Phys Solids, 1996, 44:439-464.
  • 3Marusich T D, Ortiz M. Modelling and simulation of high- speed machining. Int J Numer Meth Engng, 1995, 38: 3675-3694.
  • 4Dugdale D S. Yielding of steel sheets containing clits. J Mech Phys Solids, 1960, 8:100-104.
  • 5Barrenblatt G I. The mathematical theory of equilibrium of cracks in brittle fracture. Adv Appl Mech, 1962, 7: 55-129.
  • 6Rice J R. Mathematical analysis in the mechanics of fracture. In: Liebowitz H, ed. Fracture. New York: Academic Press, 1968. 191-311.
  • 7Camacho G T, Ortiz M. Computational modelling of impact damage in brittle materials. Int J Solids Struct, 1996, 33(20-22): 2899-2938.
  • 8Ravichandar K, Knauss W G. An experimental investigation into dynamic fracture, Part 3. On steady state crack propagation and crack branching. Int J Fracture, 1984, 26(2): 141-154.
  • 9Liu C, Knauss W G, Rosakis A J. Loading rates and the dynamic initiation toughness in brittle solids. Int J Fracture, 1998, 90:103-118.
  • 10Rose J H, Ferrante J, Smith J R.. Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett, 1981, 47(9): 675-678.

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部