摘要
讨论测度链上二阶边值问题,xΔΔ+k(t)f(t,x(σ(t)))=0,t∈[t1,t2],αx(t1)-βxΔ(t1)=0,γx(σ(t2))+δxΔ(σ(t2))=0正解的存在性,[t1,t2]T,T是测度链,利用Leggett-Williams不动点定理,可得该问题至少存在3个正解.
Concerned with the existence of positive solutions for a second-order boundary value problem on a measure chainx△△+k(t)f(t,x(σ(t)))=0,t∈[t1,t2],αx(t1)-βx(t1)=0,γx(σ(t2))+δx△(σ(t2))=0, where [ t1, t2] T, T is a measure chain. Using Leggett-Williams fixed point theorem, we show that it has at least three positive solutions.
出处
《河北大学学报(自然科学版)》
CAS
北大核心
2008年第5期462-465,共4页
Journal of Hebei University(Natural Science Edition)
基金
河北省自然科学基金资助项目(A2006000298)