期刊文献+

测度链上二阶边值问题多个正解的存在性 被引量:1

Existence of Multiple Positive Solutions for A Second-order Boundary Value Problem on A Measure Chain
下载PDF
导出
摘要 讨论测度链上二阶边值问题,xΔΔ+k(t)f(t,x(σ(t)))=0,t∈[t1,t2],αx(t1)-βxΔ(t1)=0,γx(σ(t2))+δxΔ(σ(t2))=0正解的存在性,[t1,t2]T,T是测度链,利用Leggett-Williams不动点定理,可得该问题至少存在3个正解. Concerned with the existence of positive solutions for a second-order boundary value problem on a measure chainx△△+k(t)f(t,x(σ(t)))=0,t∈[t1,t2],αx(t1)-βx(t1)=0,γx(σ(t2))+δx△(σ(t2))=0, where [ t1, t2] T, T is a measure chain. Using Leggett-Williams fixed point theorem, we show that it has at least three positive solutions.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2008年第5期462-465,共4页 Journal of Hebei University(Natural Science Edition)
基金 河北省自然科学基金资助项目(A2006000298)
关键词 测度链 边值问题 Leggett—Williams不动点定理 measure chain boundary value problem cone Leggett-Williams fixed point theorem
  • 相关文献

参考文献5

  • 1HILGER S. Analysis on measure chains-a unified approach to continuous and discrete calculus[J]. Resultate Math, 1990,18:18 - 56.
  • 2ERBE L H,PETERSON A C. Positive solutions for a nonlinear differential equation on a measure chain[J]. Math Comput Modelling,2000,32:571 - 585.
  • 3ANDERSON D R. Eigenvalue intervals for a two-point boundary value problem on a measure chain[J]. J Comput Appl Math, 2002,141:57 - 64.
  • 4ATICI F M, GUSEINOV G SH. On green's functions and positive solutions for boundary value problems on time scales[ J ]. J Comput Appl Math, 2002,141 : 75 - 99.
  • 5杜增吉,葛渭高.二阶测度链上Sturm-Liouville型边值问题的多个正解存在性[J].应用数学学报,2006,29(1):124-130. 被引量:2

二级参考文献8

  • 1Hilger S. Analysis on Measure Chains-a Unified Approach to Continuous and Discrete Calculus.Resultate Math., 1990, 18:18-56.
  • 2Aulbach B, Hilger S. Linear Dynamic Process with Inhomogeneous Time Scale. In: Nonlinear Dynamics and Quantum Dynamical Systems. Mathematical Research, Vol. 59, Berlin: Akademic Verlag, 1990.
  • 3Erbe L H, Peterson A C. Positive Solutions for a Nonlinear Differential Equation on a Measure Chain.Math. Comput. Modelling, 2000, 32:571-585.
  • 4Anderson D R. Eigenvalue Intervals for a Two-point Boundary Value Problem on a Measure Chain.J. Comput. Appl. Math., 2002, 141:57-64.
  • 5Atici F M, Guseinov G Sh. On Green'S Functions and Positive Solutions for Boundary Value Problems on Time Scales, J. Comput. Appl. Math., 2002, 141:75-99.
  • 6Bohner M, Peterson A. Dynamic Equations on Time Scales: an Introduction with Applications, New York: Birkhauser, 2001.
  • 7Agarwal R P, O'Regan D, Wong P J Y. Positive Solutions of Differential, Difference and Integral Equations. Boston: Kluwer Academic Publishers, 1999.
  • 8Leggett R W, Williams L R. Multiple Positive Fixed Points of Nonlinear Operators on Ordered Banach Spaces. Indiana Univ. Math. J., 1979, 28:673-688.

共引文献1

同被引文献4

  • 1GENG Fengjie,XU Yancong,ZHU Deming. Periodic boundary value problems for first-order impulsive dynamic equations on time scales[J]. Nonlinear Analysis, 2008,69 : 4074-4087.
  • 2WANG Dabin. Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales[J]. Computers and Mathematics with Applications,2008,56:1496-1504.
  • 3MARTIN Bohner, ALLAN Peterson. Dynamic equations on time scales, an introduction with applications [ M]. Boston: Birkhauser, 2001.
  • 4LUO Zhiguo,JING Zhujun. Periodic boundary value problem for first-order impulsive functional differential equations[J]. Computers and Mathematics with Applications, 2008,55 : 2094- 2107.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部